满分5 > 高中数学试题 >

某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生...

某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数分组低碳族的人数占本组的频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六组[50,55)150.3
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

manfen5.com 满分网
(I)根据频率分步直方图的面积是这组数据的频率,做出频率,除以组距得到高,画出频率分步直方图的剩余部分,根据频率,频数和样本容量之间的关系,做出n、a、p的值. (II)根据分层抽样方法做出两个部分的人数,列举出所有试验发生包含的事件和满足条件的事件,根据等可能事件的概率公式,得到结果. 【解析】 (Ⅰ)∵第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3, ∴高为.频率直方图如下: 第一组的人数为,频率为0.04×5=0.2, ∴. 由题可知,第二组的频率为0.3, ∴第二组的人数为1000×0.3=300, ∴. 第四组的频率为0.03×5=0.15, ∴第四组的人数为1000×0.15=150, ∴a=150×0.4=60. (Ⅱ)∵[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1, 所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人. 设[40,45)岁中的4人为a、b、c、d,[45,50)岁中的2人为m、n,则选取2人作为领队的有 (a,b)、(a,c)、(a,d)、(a,m)、(a,n)、(b,c)、(b,d)、(b,m)、 (b,n)、(c,d)、(c,m)、(c,n)、(d,m)、(d,n)、(m,n),共15种; 其中恰有1人年龄在[40,45)岁的有(a,m)、(a,n)、(b,m)、(b,n)、 (c,m)、(c,n)、(d,m)、(d,n),共8种. ∴选取的2名领队中恰有1人年龄在[40,45)岁的概率为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;
(Ⅱ)求证:AB1∥平面A1DC;
(Ⅲ)求二面角D-A1C-A的余弦值.
查看答案
已知平面向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中0<φ<π,且函数manfen5.com 满分网的图象过点manfen5.com 满分网
(1)求φ的值;
(2)将函数y=f(x)图象上各点的横坐标变为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在manfen5.com 满分网上的最大值和最小值.
查看答案
已知数列{an}满足a1+2a2+22a3+…+2n-1an=n2(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
查看答案
选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)若M,N分别是曲线ρ=2cosθ和manfen5.com 满分网上的动点,则M,N两点间的距离的最小值是   
B.(选修4-5 不等式选讲)若不等式manfen5.com 满分网对于一切非零实数x均成立,则实数a的取值范围为   
C.(选修4-1 几何证明选讲)(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于   
manfen5.com 满分网 查看答案
设x,y满足约束条件manfen5.com 满分网,若目标函数z=abx+y(a>0,b>0)的最大值为8,则a+b的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.