登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数an=f(n),n∈N*,{an}是递增数列,则实数a的取值范围是 .
已知函数
a
n
=f(n),n∈N
*
,{a
n
}是递增数列,则实数a的取值范围是
.
由题设知当1≤n≤6时,an=(3-a)n-3;当n>6时,an=an-6.再由{an}是递增数列,建立不等式组,由此能求出实数a的取值范围. 【解析】 ∵函数, an=f(n),n∈N*, ∴当1≤n≤6时,an=(3-a)n-3; 当n>6时,an=an-6. ∵{an}是递增数列, ∴, 解得. 故答案为:().
复制答案
考点分析:
相关试题推荐
二项展开式中,第
项是常数项.
查看答案
把函数y=sinx(x∈R)的图象上所有点向左平行移动
个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是
.
查看答案
一个几何体的三视图如右图所示,这个几何体的体积为
.
查看答案
如图程序框图,输出s=
.(用数值作答)
查看答案
以下三个命题:①关于x的不等式
的解为(-∞,1]②曲线y=2sin2x与直线x=0,
及x轴围成的图形面积为s
1
,曲线
与直线x=0,x=2及x轴围成的图形面积为s
2
,则s
1
+s
2
=2③直线x-3y=0总在函数y=lnx图象的上方其中真命题的个数是( )
A.0
B.1
C.2
D.3
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.