满分5 > 高中数学试题 >

已知数列{an}的通项公式为an=2+(n∈N*). (1)求数列{an}的最大...

已知数列{an}的通项公式为an=2+manfen5.com 满分网(n∈N*).
(1)求数列{an}的最大项;
(2)设bn=manfen5.com 满分网,试确定实常数p,使得{bn}为等比数列;
(3)设m,n,p∈N*,m<n<p,问:数列{an}中是否存在三项am,an,ap,使数列am,an,ap是等差数列?如果存在,求出这三项;如果不存在,说明理由.
(1)根据数列an}的通项公式可知随着n的增大而减小,即为递减数列,故可知a1为数列中的最大项,进而可得答案. (2)把(1)中的an代入bn,根据等比数列的性质可知b2n+1-bnbn+2=0,把bn代入,进而可求得p. (3)根据(1)中数列{an}的通项公式可分别求得am,an,ap,使数列am,an,ap是等差数列,则2an=am+ap,把am,an,ap代入整理可得关于m,n,p的关系式,再根据m<n<p判定等式是否成立. 解(1)由题意an=2+,随着n的增大而减小,所以{an}中的最大项为a1=4. (2)bn===,若{bn}为等比数列, 则b2n+1-bnbn+2=0(n∈N*)所以[(2+p)3n+1+(2-p)]2-[{2+p)3n+(2-p)][(2+p)3n+2+(2-p)]=0(n∈N*), 化简得(4-p2)(2•3n+1-3n+2-3n)=0即-(4-p2)•3n•4=0,解得p=±2. 反之,当p=2时,bn=3n,{bn}是等比数列;当p=-2时,bn=1,{bn}也是等比数列. 所以,当且仅当p=±2时{bn}为等比数列. (3)因为,,, 若存在三项am,an,ap,使数列am,an,ap是等差数列,则2an=am+ap, 所以=, 化简得3n(2×3p-n-3p-m-1)=1+3p-m-2×3n-m(*), 因为m,n,p∈N*,m<n<p, 所以p-m≥p-n+1,p-m≥n-m+1, 所以3p-m≥3p-n+1=3×3p-n,3p-m≥3n-m+1=3×3n-m, (*)的左边≤3n(2×3p-n-3×3p-n-1)=3n(-3p-n-1)<0, 右边≥1+3×3n-m-2×3n-m=1+3n-m>0,所以(*)式不可能成立, 故数列{an}中不存在三项am,an,ap,使数列am,an,ap是等差数列.
复制答案
考点分析:
相关试题推荐
设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0,
(Ⅰ)求证:圆C1、圆C2相交于两个定点;
(Ⅱ)设点P是椭圆manfen5.com 满分网上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由.
查看答案
2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数(以百人为计数单位)作了一个模拟预测.为了方便起见,以10分钟为一个计算单位,上午9点10分作为第一个计数人数的时间,即n=1;9点20分作为第二个计数人数的时间,即n=2;依此类推…,把一天内从上午9点到晚上24点分成了90个计数单位.第n个时刻进入园区的人数f(n)和时间n(n∈N*)满足以下关系:
manfen5.com 满分网,n∈N*
第n个时刻离开园区的人数g(n)和时间n(n∈N*)满足以下关系:
manfen5.com 满分网,n∈N*
(Ⅰ)试计算在当天下午3点整(即15点整)时,世博园区内共有游客多少百人?(提示:manfen5.com 满分网,结果仅保留整数)
(Ⅱ)问:当天什么时刻世博园区内游客总人数最多?
查看答案
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
查看答案
如图,点B在以PA为直径的圆周上,点C在线段AB上,已manfen5.com 满分网,设∠APB=α,∠APC=β,α,β均为锐角.
(1)求β;
(2)求向量manfen5.com 满分网的数量积manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
已知定义在R上的函数f(x)满足f(1)=2,f'(x)<1,则不等式f(x2)<x2+1解集    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.