类似椭圆的性质,将面积表达式的“+”号改成“-”即得b2.设|PF1|=r1,|PF2|=r2,根据三角形面积公式可表示出△PF1F2的面积,由余弦定理可求得r1r2的表达式,进而求得S与b和tanθ的关系式,原式得证.
【解析】
类似椭圆的性质:P是双曲线-=1(a>0,b>0)上任一点,焦点F1、F2,∠F1PF2=α,三角形PF1F2面积为 b2.
证明:设|PF1|=r1,|PF2|=r2,
则S=r1r2sin2θ,又|F1F2|=2c,
由余弦定理有
(2c)2=r12+r22-2r1r2cos2θ=(r1+r2)2-2r1r2-2r1r2cos2θ=(2a)2-2r1r2(1+cos2θ),
于是2r1r2(1+cos2θ)=4a2-4c2=4b2.
所以r1r2=.
这样即有S=•sin2θ=b2 =b2.
故答案为:b2.