满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,cc...

在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
(Ⅰ)根据等差数列的性质可知acosC+ccosA=2bcosB,利用正弦定理把边转化成角的正弦,化简整理得sinB=2sinBcosB,求得cosB,进而求得B. (Ⅱ)先利用二倍角公式对原式进行化简整理,进而根据A的范围和正弦函数的单调性求得2sin2A+cos(A-C)的范围. 【解析】 (Ⅰ)∵acosC,bcosB,ccosA成等差数列, ∴acosC+ccosA=2bcosB, 由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC, 代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB, 即:sin(A+C)=sinB, ∴sinB=2sinBcosB, 又在△ABC中,sinB≠0, ∴, ∵0<B<π, ∴; (Ⅱ)∵, ∴ ∴ = =, ∵, ∴ ∴2sin2A+cos(A-C)的范围是.
复制答案
考点分析:
相关试题推荐
已知定义域为R的函数f (x)对任意实数x,y满足f(x+y)+f(x-y)=2f (x)cosy,且f(0)=0,f(manfen5.com 满分网)=1.给出下列结论:
①f(manfen5.com 满分网)=manfen5.com 满分网
②f(x)为奇函数  
③f(x)为周期函数  
④f(x)在(0,π)内为单调函数
其中正确的结论是    .( 填上所有正确结论的序号). 查看答案
已知manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知某人投蓝的命中率为manfen5.com 满分网,则此人投蓝4次,至少命中3次的概率是    查看答案
已知函数f(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a的取值范围是    查看答案
在△ABC中,manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=mmanfen5.com 满分网+nmanfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.