满分5 > 高中数学试题 >

抛物线y2=-2x的准线方程为( ) A.x=-1 B.x=1 C. D.

抛物线y2=-2x的准线方程为( )
A.x=-1
B.x=1
C.manfen5.com 满分网
D.manfen5.com 满分网
先根据抛物线方程求得p,进而根据抛物线的性质,求得准线方程. 【解析】 ∵抛物线y2=-2x, ∴抛物线的焦点在x轴上,开口向左,且p=1, ∴准线方程是x= 故选D.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.
(ⅰ)证明:当x>1时,函数f(x)不存在“保值区间”;
(ⅱ)函数f(x)是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
查看答案
已知抛物线C的顶点在坐标原点,焦点F在x轴上,且过点(1,2).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过椭圆manfen5.com 满分网的一个焦点F1作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则manfen5.com 满分网为定值,且定值是manfen5.com 满分网”.命题中涉及了这么几个要素:给定的圆锥曲线T,过该圆锥曲线焦点F1的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F1、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明.
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(不必证明).
查看答案
已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
查看答案
如图,正方体ABCD-A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(Ⅱ)按图中示例,在给出的方格纸中,用事先再画出此正方体的3个形状不同的表面展开图,且每个展开提均满足条件“有四个正方形连成一个长方形”.(如果多画,则按前3个记分).

manfen5.com 满分网 manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别是a,b,c,manfen5.com 满分网
(1)求sinC;
(2)若c=2,sinB=2sinA,求△ABC的面积.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.