满分5 > 高中数学试题 >

在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2....

在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
(Ⅰ)先利用F2是抛物线C2:y2=4x的焦点求出F2的坐标,再利用|MF2|=以及抛物线的定义求出点M的坐标,可以得到关于椭圆方程中参数的两个等式联立即可求C1的方程; (Ⅱ)先利用,以及直线l∥MN得出直线l与OM的斜率相同,设出直线l的方程,把直线方程与椭圆方程联立得到关于A,B两点坐标的等式,整理代入,即可求出直线l的方程. 【解析】 (Ⅰ)由C2:y2=4x知F2(1,0). 设M(x1,y1),M在C2上,因为, 所以,得,.M在C1上,且椭圆C1的半焦距c=1, 于是 消去b2并整理得9a4-37a2+4=0,解得a=2(不合题意,舍去). 故椭圆C1的方程为. (Ⅱ)由知四边形MF1NF2是平行四边形,其中心为坐标原点O, 因为l∥MN,所以l与OM的斜率相同, 故l的斜率.设l的方程为. 由 消去y并化简得9x2-16mx+8m2-4=0. 设A(x1,y1),B(x2,y2),,. 因为,所以x1x2+y1y2=0. x1x2+y1y2 =x1x2+6(x1-m)(x2-m) =7x1x2-6m(x1+x2)+6m2 ==. 所以.此时△=(16m)2-4×9(8m2-4)>0, 故所求直线l的方程为,或.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图所示.
(1)求证:BC⊥平面ACD
(2)求BD与平面ABC所成角θ的正弦值.

manfen5.com 满分网 查看答案
从某高中人校新生中随机抽取100名学生,测得身高情况如下表所示.
(1)请在频率分布表中的①、②位置填上相应的数据,并在所给的坐标系中补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)按身高分层抽样,现已抽取20人参加某项活动,其中有3名学生担任迎宾工作,记这3名学生中“身高低于170cm”的人数为ξ,求ξ的分布列及期望.
manfen5.com 满分网
查看答案
如图,测量河对岸的塔形建筑AB,A为塔的顶端,B为塔的底端,河两岸的地面上任意一点与塔底端B处在同一海拔水平面上,现给你一架测角仪(可以测量仰角、俯角和视角),再给你一把尺子(可以测量地面上两点问距离),图中给出的是在一侧河岸地面C点测得仰角∠ACB=α,请设计一种测量塔形建筑高度AB的方法(其中测角仪支架高度忽略不计,计算结果可用测量数据所设字母表示).

manfen5.com 满分网 查看答案
manfen5.com 满分网若y=f(x)的图象如图所示,定义F(x)=manfen5.com 满分网,x∈[0,1],则下列对F(x)的性质描述正确的有   
(1)F(x)是[0,1]上的增函数;
(2)F′(x)=f(x);
(3)F(x)是[0,1]上的减函数;
(4)∃x∈[0,1]使得F(1)=f(x). 查看答案
manfen5.com 满分网地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为manfen5.com 满分网,则两直线所夹锐角的弧度数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.