满分5 > 高中数学试题 >

从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六...

manfen5.com 满分网从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50),[50,60),…[90,100]后得到如下频率分布直方图.
(Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80)的概率;
(Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60),记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望.
(I)根据平均数是频率分布直方图各个小矩形的面积×底边中点横坐标之和,求出本次考试的平均分; (II)先求出成绩在[70,80)的人数,然后利用概率公式进行求解即可; (III)先分别求出学生成绩在[40,60),在[60,100]的人数,X的所以可能取值为0,1,2,列出分布列,最后利用数学期望公式进行求解即可. 【解析】 (Ⅰ)=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71 据此估计本次考试的平均分为71.(3分) (Ⅱ)成绩在[70,80)的有12人(4分) 从这40名学生中抽取2人,这2人成绩都在[70,80)的概率为 (Ⅲ)学生成绩在[40,60)的有10人,在[60,100]的有30人,X的所以可能取值为0,1,2(8分) 则(每个1分)(11分) 所以X的分布列为(12分) 数学期望
复制答案
考点分析:
相关试题推荐
已知bcosC=(2a-c)cosB,a+c=4,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边.
(1)求角B的大小;    
(2)若b=2manfen5.com 满分网,求△ABC的面积.
查看答案
下列给出的四个命题中:
①已知数列{an},那么对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上是{an}为等差数列的充分不必要条件;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④在实数数列{an}中,已知a1=0,|a2|=|a1-1|,|a3|=|a2-1|,…,|an|=|an-1-1|,则a1+a2+a3+a4的最大值为2.
其中为真命题的是     (写出所有真命题的代号). 查看答案
manfen5.com 满分网已知函数f(x)=manfen5.com 满分网,若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是    查看答案
设F为抛物线manfen5.com 满分网的焦点,与抛物线相切于点P(-4,-4)的直线l与x轴的交点为Q,则∠PQF的值是    查看答案
若a>0,则不等式manfen5.com 满分网的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.