满分5 > 高中数学试题 >

已知圆的极坐标方程为:. (1)将极坐标方程化为普通方程; (2)若点P(x,y...

已知圆的极坐标方程为:manfen5.com 满分网
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
(1)极坐标方程即  ρ2-4(+ ),即 x2+y2-4x-4y+6=0. (2)圆的参数方程为 ,故 x+y=4+(sinα+cosα)=4+2sin(α+),由于  -1≤sin(α+)≤1,可得 2≤x+y≤6. 【解析】 (1)  即  ρ2-4(+ ),即 x2+y2-4x-4y+6=0.(2)圆的参数方程为 ,∴x+y=4+(sinα+cosα)=4+2sin(α+). 由于-1≤sin(α+)≤1,∴2≤x+y≤6,故x+y 的最大值为6,最小值等于 2.
复制答案
考点分析:
相关试题推荐
变换T1是逆时针旋转manfen5.com 满分网的旋转变换,对应的变换矩阵是M1;变换T2对应用的变换矩阵是manfen5.com 满分网
(Ⅰ)求点P(2,1)在T1作用下的点P'的坐标;
(Ⅱ)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.
查看答案
已知函数f(x)=x(x-a)(x-b),点A(m,f(m)),B(n,f(n)).
(1)设b=a,求函数f(x)的单调区间;
(2)若函数f(x)的导函数f′(x)满足:当|x|≤l时,有|f′(x)|≤manfen5.com 满分网恒成立,求函数f(x)的表达式;
(3)若0<a<b,函数f(x)在x=m和x=n处取得极值,且a+b≤2manfen5.com 满分网.问:是否存在常数a、b,使得manfen5.com 满分网manfen5.com 满分网=0?若存在,求出a,b的值;若不存在,请说明理由.
查看答案
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设n是过原点的直线,l是与n垂直相交于点P,且与曲线C相交于A、B两点的直线,且manfen5.com 满分网,问:是否存在上述直线l使manfen5.com 满分网成立?若存在,求出直线l的方程,若不存在,请说明理由.
查看答案
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足manfen5.com 满分网
(Ⅰ)证明数列manfen5.com 满分网成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当manfen5.com 满分网时,求上表中第k(k≥3)行所有项的和.

manfen5.com 满分网 查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;
(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.