满分5 > 高中数学试题 >

命题p:若,则与的夹角为钝角.命题q:定义域为R的函数f(x)在(-∞,0)及(...

命题p:若manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网的夹角为钝角.命题q:定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,则f(x)在(-∞,+∞)上是增函数.下列说法正确的是( )
A.“p或q”是真命题
B.“p且q”是假命题
C.¬p为假命题
D.¬q为假命题
根据向量数量积与夹角的关系及函数单调性的定义,我们及判断出命题p与命题q的真假,进而根据复数命题的真值表,我们对四个答案逐一进行分析,即可得到答案. 【解析】 时,向量与可能反向 故命题p:若,则与的夹角为钝角为假命题 若定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数, f(x)在(-∞,+∞)上的单调性无法确定 故命题q:定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,则f(x)在(-∞,+∞)上是增函数也为假命题 故“p或q”是假命题,故A错误; “p且q”是假命题,故B正确; ¬p、¬q均为真命题,故C、D错误; 故选B
复制答案
考点分析:
相关试题推荐
函数y=sinx(3sinx+4cosx)(x∈R)的最大值为M,最小正周期为T,则有序数对(M,T)为( )
A.(5,π)
B.(4,π)
C.(-1,2π)
D.(4,2π)
查看答案
投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为manfen5.com 满分网,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设ξ表示正面向上的枚数.
(1)若A、B出现一正一反与C、D出现两正的概率相等,求a的值;
(2)求ξ的分布列及数学期望(用a表示);
(3)若出现2枚硬币正面向上的概率最大,试求a的取值范围.
查看答案
已知圆的极坐标方程为:manfen5.com 满分网
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
查看答案
变换T1是逆时针旋转manfen5.com 满分网的旋转变换,对应的变换矩阵是M1;变换T2对应用的变换矩阵是manfen5.com 满分网
(Ⅰ)求点P(2,1)在T1作用下的点P'的坐标;
(Ⅱ)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.
查看答案
已知函数f(x)=x(x-a)(x-b),点A(m,f(m)),B(n,f(n)).
(1)设b=a,求函数f(x)的单调区间;
(2)若函数f(x)的导函数f′(x)满足:当|x|≤l时,有|f′(x)|≤manfen5.com 满分网恒成立,求函数f(x)的表达式;
(3)若0<a<b,函数f(x)在x=m和x=n处取得极值,且a+b≤2manfen5.com 满分网.问:是否存在常数a、b,使得manfen5.com 满分网manfen5.com 满分网=0?若存在,求出a,b的值;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.