在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票.股民老王在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老王预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.
现在老王决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且已经求得
.
(1)请你帮老王算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标);
(2)老王如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
考点分析:
相关试题推荐
某高校的自主招生考试数学试卷共有8道选择题,每个选择题都给了4个选项(其中有且仅有一个是正确的).评分标准规定:每题只选1项,答对得5分,不答或答错得0分.某考生每道题都给出了答案,已确定有4道题的答案是正确的,而其余的题中,有两道题每题都可判断其中两个选项是错误的,有一道题可以判断其中一个选项是错误的,还有一道题因不理解题意只能乱猜.对于这8道选择题,试求:
(1)该考生得分为40分的概率;
(2)该考生所得分数ξ的分布列及数学期望Eξ.
查看答案
下面给出的四个命题中:
①对任意的n∈N*,点P
n(n,a
n)都在直线y=2x+1上是数列a
n为等差数列的充分不必要条件;
②“m=-2”是直线(m+2)x+my+1=0与“直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x
2+y
2+Dx+Ey+F=0(D
2+E
2-4F>0)与坐标轴有4个交点A(x
1,0),B(x
2,0),C(0,y
1),D(0,y
2),则有x
1x
2-y
1y
2=0;
④将函数y=cos2x的图象向右平移
个单位,得到函数
的图象.
其中是真命题的有
(将你认为正确的序号都填上).
查看答案
对于连续函数f(x)和g(x),函数|f(x)-g(x)|在闭区间[a,b]上的最大值称为f(x)与g(x)在闭区间[a,b]上的“绝对差”,记为△(f(x),g(x)),则x∈[2,3]时,△(
,
x
2-x)=
.
查看答案
设
的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中x
3的系数为
.
查看答案
已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若
=-
,则B=
.
查看答案