满分5 > 高中数学试题 >

已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于(...

已知集合M={x|x2<4},N={x|x2-2x-3<0},则集合M∩N等于( )
A.{x|x<-2}
B.{x|x>3}
C.{x|-1<x<2}
D.{x|2<x<3}
先化简两个集合,再由交集的定义求交集,然后比对四个选项,选出正确选项来 【解析】 由题意集合M={x|x2<4}═{x|-2<x<2},N={x|x2-2x-3<0}={x|-1<x<3}, ∴M∩N={x|-1<x<2} 故选C
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网.(a,b为常数)
(Ⅰ)当a=1时,F(x)=0有两个不相等的实根,求b的取值范围;
(Ⅱ)若F(x)有三个不同的极值点0,x1,x2.a为何值时,能使函数F(x)在x1(或者x2)处取得的极值为b?
(Ⅲ)若对任意的a∈[-1,0],不等式F(x)≥-8在[-2,2]上恒成立,求b的取值范围.
查看答案
在平面直角坐标系中,O为坐标原点,给定两点A(1,0),B(0,-2),点C满足manfen5.com 满分网,其中m,n∈R且m-2n=1.
(1)求点C的轨迹方程;
(2)设点C的轨迹与双曲线manfen5.com 满分网(a>0,b>0且a≠b)交于M、N两点,且以MN为直径的圆过原点,求证:manfen5.com 满分网为定值;
(3)在(2)的条件下,若双曲线的离心率不大于manfen5.com 满分网,求双曲线实轴长的取值范围.
查看答案
已知数列{an} 是公差为d(d≠0)的等差数列,Sn为其前n项和.
(1)若a2,a3,a6依次成等比数列,求其公比q;
(2)若manfen5.com 满分网,求证:对任意的m,n∈N*,向量manfen5.com 满分网与向量manfen5.com 满分网共线;
(3)若a1=1,manfen5.com 满分网manfen5.com 满分网,问是否存在一个半径最小的圆,使得对任意的n∈N*,点Qn都在这个圆内或圆周上.
查看答案
如图,多面体EF-ABCD中,ABCD是梯形,AB∥CD,ACFE是矩形,面ACFE⊥面ABCD,AD=DC=CB=AE=a,∠ACB=manfen5.com 满分网
(1)若M是棱EF上一点,AM∥平面BDF,求EM;
(2)求二面角B-EF-D的平面角的余弦值.

manfen5.com 满分网 查看答案
manfen5.com 满分网在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票.股民老王在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老王预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.
现在老王决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且已经求得manfen5.com 满分网
(1)请你帮老王算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标);
(2)老王如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.