满分5 > 高中数学试题 >

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱...

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为manfen5.com 满分网

manfen5.com 满分网
解法(一): (1)通过观察,根据三垂线定理易得:不管点E在AB的任何位置,D1E⊥A1D总是成立的. (2)在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题可采用“等积法”:即利用三棱锥的换底法,通过体积计算得到点到平面的距离.本法具有设高不作高的特殊功效,减少了推理,但计算相对较为复杂.根据=既可以求得点E到面ACD1的距离. (3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE, 则∠DHD1为二面角D1-EC-D的平面角. 解法(二): 以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可. (1). (2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,从而,所以点E到平面AD1C的距离为. (3)设平面D1EC的法向量,可求得.,因为二面角D1-EC-D的大小为,所以根据余弦定理可得AE=时,二面角D1-EC-D的大小为. 解法(一): (1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E (2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=, 故.∴, ∴,∴. (3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1-EC-D的平面角. 设AE=x,则BE=2-x在Rt△D1DH中,∵,∴DH=1. ∵,∴在Rt△DHE中,EH=x,. ∴. ∴. 解法(二): 以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0) (1).(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为, 则也即,得,从而,所以点E到平面AD1C的距离为. (3)设平面D1EC的法向量, ∴, 由令b=1,∴c=2,a=2-x, ∴. 依题意. ∴(不合,舍去),. ∴AE=时,二面角D1-EC-D的大小为.
复制答案
考点分析:
相关试题推荐
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是manfen5.com 满分网,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.
查看答案
已知函数f(x)=(sinx+cosx)2+cos2x,
(1)求函数f(x)的最小正周期;
(2)当manfen5.com 满分网时,求函数f(x)的最大值,并写出x的相应的取值.
查看答案
下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n
manfen5.com 满分网
下列说法中正确的命题的序号是     (填出所有正确命题的序号).
manfen5.com 满分网
②f(x)是奇函数;
③f(x)在定义域上单调递增;
④f(x)的图象关于点(manfen5.com 满分网,0)对称 查看答案
直线manfen5.com 满分网恒过定点    查看答案
设函数f(x)=ax2+b(a≠0),若manfen5.com 满分网,则x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.