满分5 > 高中数学试题 >

如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中...

manfen5.com 满分网如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=manfen5.com 满分网,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
本题考查了空间几何体的体积、线面位置关系的判定、线面垂直等知识点, (Ⅰ)利用换底法求VP-ADE即可;(Ⅱ)利用三角形的中位线及线面平行的判定定理解决; (Ⅲ)通过证明AF⊥平面PBE即可解决. 【解析】 (Ⅰ)三棱锥E-PAD的体积.(4分) (Ⅱ)当点E为BC的中点时,EF与平面PAC平行.(5分) ∵在△PBC中,E、F分别为BC、PB的中点, ∴EF∥PC,又EF⊄平面PAC,而PC⊂平面PAC, ∴EF∥平面PAC.(8分) (Ⅲ)证明: ∵PA⊥平面ABCD,BE⊂平面ABCD, ∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP⊂平面PAB, ∴EB⊥平面PAB,又AF⊂平面PAB, ∴AF⊥BE.(10分) 又PA=AB=1,点F是PB的中点, ∴AF⊥PB, 又∵PB∩BE=B,PB,BE⊂平面PBE, ∴AF⊥平面PBE. ∵PE⊂平面PBE, ∴AF⊥PE.(12分)
复制答案
考点分析:
相关试题推荐
为了迎接2010上海世博会,某网站举行了一次“世博会知识竞赛”,共有800人参加,随机地编号为001,002,…800.为了解本次竞赛的成绩情况,从中抽取了50人的成绩(得分均为整数,满分100分)进行统计,这50人考试成绩全部介于60分到100分之间,将考试成绩按如下方式分成8组,第一组[60,65),第二组[65,70)…第八组[95,100],得到的频率分布直方图如图.
(1)若抽取的50个样本是用系统抽样的方法得到,且第一段抽到的号码为002,则第三段抽到的号码是多少?
(2)若从考试成绩属于第6组和第8组的所有人中随机抽取2人,设他们的成绩为x,y,求满足|x-y|≤5的事件的概率.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,向量manfen5.com 满分网,n=(sinA,-1),且m⊥n.
(Ⅰ)求角A的大小;(Ⅱ)若a=2,manfen5.com 满分网,求b的值.
查看答案
设n阶方阵manfen5.com 满分网
任取An中的一个元素,记为x1;划去x1所在行与列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中一个元素,记为x2,划去x2所在行与列,…将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn
若n=3时,则S3=    ,若n=k时,则Sk=    查看答案
右图中空间组合体的正视图、侧视图和俯视图的外形是边长为3的正方形,则该几何体的表面积为   
manfen5.com 满分网 查看答案
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.点P的极坐标是manfen5.com 满分网,过点P与直线manfen5.com 满分网垂直的直线的极坐标方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.