满分5 > 高中数学试题 >

已知椭圆C的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合. (1)求...

已知椭圆C的中心在坐标原点,离心率manfen5.com 满分网,且其中一个焦点与抛物线manfen5.com 满分网的焦点重合.
(1)求椭圆C的方程;
(2)过点S(manfen5.com 满分网,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
(1)先设处椭圆的标准方程,根据离心率求的a和c的关系,进而根据抛物线的焦点求得c,进而求得a,则b可得,进而求的椭圆的标准方程. (2)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=.联立两个圆的方程求得其交点的坐标,推断两圆相切,进而可判断因此所求的点T如果存在,只能是这个切点.证明时先看直线l垂直于x轴时,以AB为直径的圆过点T(1,0).再看直线l不垂直于x轴,可设出直线方程,与圆方程联立消去y,记点A(x1,y1),B(x2,y2),根据伟大定理求得x1+x2和x1x2的表达式,代入•的表达式中,求得•=0,进而推断TA⊥TB,即以AB为直径的圆恒过点T(1,0). 【解析】 (Ⅰ)设椭圆的方程为,离心率,,抛物线的焦点为(0,1),所以,椭圆C的方程是x2+=1 (Ⅱ)若直线l与x轴重合,则以AB为直径的圆是x2+y2=1,若直线l垂直于x轴,则以AB为直径的圆是(x+)2+y2=. 由解得即两圆相切于点(1,0). 因此所求的点T如果存在,只能是(1,0). 事实上,点T(1,0)就是所求的点.证明如下: 当直线l垂直于x轴时,以AB为直径的圆过点T(1,0). 若直线l不垂直于x轴,可设直线l:y=k(x+). 由即(k2+2)x2+k2x+k2-2=0. 记点A(x1,y1),B(x2,y2),则 又因为=(x1-1,y1),=(x2-1,y2),•=(x1-1)(x2-1)+y1y2=(x1-1)(x2-1)+k2(x1+)(x2+) =(k2+1)x1x2+(k2-1)(x1+x2)+k2+1 =(k2+1)+(k2-1)++1=0, 所以TA⊥TB,即以AB为直径的圆恒过点T(1,0). 所以在坐标平面上存在一个定点T(1,0)满足条件
复制答案
考点分析:
相关试题推荐
某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为manfen5.com 满分网
(1)求该小组中女生的人数;
(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为manfen5.com 满分网,每个男生通过的概率均为manfen5.com 满分网;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.
查看答案
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为manfen5.com 满分网
(1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角D-EC-B的平面角的余弦值.

manfen5.com 满分网 查看答案
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.
(1)求数列{an}的通项公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一个周期内,当manfen5.com 满分网时,y取最小值-3;当manfen5.com 满分网时,y最大值3.
(I)求f(x)的解析式; 
(II)求f(x)在区间manfen5.com 满分网上的最值.
查看答案
A.(不等式选做题)不等式manfen5.com 满分网|≤1的实数解集为   
B.(几何证明选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则manfen5.com 满分网=   
C.(坐标系与参数方程选做题)若△ABC的底边BC=10,∠B=2∠A,以B点为极点,BC 为极轴,则顶点A 的极坐标方程为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.