已知函数f(x)=x
2+lnx-ax.
(Ⅰ)当a=3时,求f(x)的单调增区间;
(Ⅱ)若f(x)在(0,1)上是增函数,求a得取值范围;
(Ⅲ)在(Ⅱ)的结论下,设g(x)=x
2+|x-a|,(1≤x≤3),求函数g(x)的最小值.
考点分析:
相关试题推荐
已知椭圆C的中心在坐标原点,离心率
,且其中一个焦点与抛物线
的焦点重合.
(1)求椭圆C的方程;
(2)过点S(
,0)的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T,若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为
;
(1)求该小组中女生的人数;
(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为
,每个男生通过的概率均为
;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.
查看答案
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为
.
(1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角D-EC-B的平面角的余弦值.
查看答案
已知数列{a
n}的各项均为正数,S
n是数列{a
n}的前n项和,且4S
n=a
n2+2a
n-3.
(1)求数列{a
n}的通项公式;
(2)已知b
n=2
n,求T
n=a
1b
1+a
2b
2+…+a
nb
n的值.
查看答案
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)在一个周期内,当
时,y取最小值-3;当
时,y最大值3.
(I)求f(x)的解析式;
(II)求f(x)在区间
上的最值.
查看答案