满分5 > 高中数学试题 >

已知:正数数列an中,若关于x的方程有相等的实根 (1)若a1=1,求a2,a3...

已知:正数数列an中,若关于x的方程manfen5.com 满分网有相等的实根
(1)若a1=1,求a2,a3的值;并证明manfen5.com 满分网
(2)若a1=a,bn=an-(3n-12)•2n,求使bn+1≥bn对一切n∈N+都成立的a的取值范围.
(1)由得an+1=3an+2,再由an+1=3an+2得an+1+1=3(a1+1),由此能够证明. (2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n,bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,由此能求出使bn+1≥bn对一切n∈N+都成立的a的取值范围. 【解析】 (1)由得an+1=3an+2∴ 由an+1=3an+2得an+1+1=3(a1+1), 所以an+1为首项为2公比为3的等比数列 得an+1=2•3n-1(5分), (8分) (2)当a1=a时,an+1=(a+1)•3n-1,bn=(a+1)•3n-1-1-(3n-12)•2n bn+1-bn=(a+1)•2•3n-1-(3n-6)•2n≥0对一切n∈N+都成立,所以 令,, 所以,所以(16分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,且不等式f(x)≥a2+b2+c2对任意x>1恒成立.
(Ⅰ)试求函数f(x)的最小值;
(Ⅱ)试求a+2b+2c的最大值.
查看答案
在直角坐标系xOy中,曲线C的参数方程为manfen5.com 满分网为参数),点M的坐标为(-1,1);若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,
(Ⅰ)请将点M的直角坐标化为极坐标(限定ρ≥0,-π<θ≤π);
(Ⅱ)若点N是曲线C上的任一点,求线段MN的长度的最大值和最小值.
查看答案
已知点A(1,0),B(2,2),C(3,0).矩阵M表示变换“顺时针旋转45°”,
(Ⅰ)写出矩阵M及其逆阵M-1
(Ⅱ)请求出△ABC在矩阵M下所得△A1B1C1的面积.
查看答案
已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.
(1)求实数a的值;
(2)若关于x的方程manfen5.com 满分网在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(3)证明:对任意的正整数n,不等式manfen5.com 满分网都成立.
查看答案
等腰梯形ABEF中,AB∥EF,AB=manfen5.com 满分网EF.将此等腰梯形绕其上底边EF所在的直线旋转一定的角度到DCEF位置(如图).
(Ⅰ)可以直观感知,四边形ABCD是平行四边形,请给出证明;
(Ⅱ)求证:EF⊥AD;
(Ⅲ)设AC、BD交于O点,请在线段EF上探求一点M,使得三棱锥M-FAD与三棱锥O-EBC体积相等.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.