登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知函数的值域是[0,+∞),则它的定义域可以是( ) A.(0,1] B.(0...
已知函数
的值域是[0,+∞),则它的定义域可以是( )
A.(0,1]
B.(0,1)
C.(-∞,1)
D.(-∞,1]
要使f(x)的值域为[0,+∞)由对数函数的图象可知,真数4x-2x+1+1要能取到(0,1]之间的所有值. 令2x=t换元解决即可. 【解析】 由题意真数4x-2x+1+1要能取到(0,1]之间的所有值, 令2x=t,4x-2x+1+1=t2-2t+1 当x∈(0,1]时,t∈(1,2],t2-2t+1∈(0,1],符合要求, 故选A
复制答案
考点分析:
相关试题推荐
函数f(x)=a|x-b|+2在[0,+∞)上为增函数,的充分必要条件是( )
A.a=1且b=0
B.a<0且b>0
C.a>0且b≤0
D.a>0且b<0
查看答案
sin15°cos75°+cos15°sin105°等于( )
A.0
B.
C.
D.1
查看答案
如图,已知U是全集,A,B,C是U的非空子集,则阴影部分所表示的集合是( )
A.(A∩B)∩C
B.(A∩B)∪C
C.(A∩B)∩C
U
C
D.(A∩B)∪C
U
C
查看答案
若log
a
2<0,2
b
>1,则( )
A.0<a<1,b>0
B.a>1,b<0
C.a>1,b>0
D.0<a<1,b<0
查看答案
定义:若数列{A
n
}满足A
n+1
=A
n
2
,则称数列{A
n
}为“平方数列”.已知数列{a
n
}中,a
1
=2,点(a
n
,a
n+1
)在函数f(x)=2x
2
+2x的图象上,其中n为正整数.
(1)证明:数列{2a
n
+1}是“平方数列”,且数列{lg(2a
n
+1)}为等比数列.
(2)设(1)中“平方数列”的前n项之积为T
n
,即T
n
=(2a
1
+1)(2a
2
+1)…(2a
n
+1),求数列{a
n
}的通项及T
n
关于n的表达式.
(3)记
,求数列{b
n
}的前n项之和S
n
,并求使S
n
>4020的n的最小值.
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.