满分5 > 高中数学试题 >

如图,正三棱锥ABC-A1B1C1中,AB=2,AA1=1,D是BC的中点,点P...

如图,正三棱锥ABC-A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=manfen5.com 满分网
(I)求证:PA1⊥B1C1
(II)求证:PB1∥平面AC1D;
(III)求多面体PA1B1DAC1的体积.

manfen5.com 满分网
(I)要证PA1⊥B1C1,可以B1C1⊥平面A1PQ,只需要证明B1C1⊥A1Q,B1C1⊥PQ,取B1C1的中点Q,连A1Q,PQ,即可证得; (II)要证PB1∥平面AC1D,利用线面平行的判定,只需证明PB1平行于平面AC1D中的直线,连接BQ,可以证明四边形BB1PQ为平行四边形,从而得证; (III)先求三棱锥P-A1B1C1的体积,再求多面体ABD-A1B1C1的体积,相加即得多面体PA1B1DAC1的体积. 证明:(I)取B1C1的中点Q,连A1Q,PQ ∵PB1=PC1,A1B1=A1C1, ∴B1C1⊥A1Q,B1C1⊥PQ ∵A1Q∩PQ=Q ∴B1C1⊥平面A1PQ,∵PA1⊂平面A1PQ ∴PA1⊥B1C1; (II)连BQ,在△PB1C1中,PB1=PC1=,B1C1=2,Q为中点,∴PQ=1 ∵BB1=AA1=1 ∴BB1=PQ 在平面PBB1CC1中,BB1⊥B1C1,PQ⊥B1C1 ∴BB1∥PQ ∴四边形BB1PQ为平行四边形 ∴PB1∥BQ ∵BQ∥DC1 ∴PB1∥DC1 ∴PB1∥平面AC1D; (III)三棱锥P-A1B1C1的体积为 多面体ABD-A1B1C1的体积为. ∴多面体PA1B1DAC1的体积为.
复制答案
考点分析:
相关试题推荐
已知直线l的方程为3x-2y-1=0,数列{an}的前n项和为Sn,点(an,Sn)在直线l上.
(I)求数列{an}的通项公式;
(II)manfen5.com 满分网,数列{bn}的前n项和为manfen5.com 满分网的最大值.
查看答案
合肥一中为了了解学校食堂的服务质量情况,对在校就餐的1400名学生按5%的比例进行问卷调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表所示(服务满意度为x,价格满意度为y).

人数             y
x
价格满意度
12345




11122
221341
337884
414641
51231
(I)作出“价格满意度”的频率分布直方图;
manfen5.com 满分网
(II)求“服务满意度”为3时的5个“价格满意度”数据的标准差;manfen5.com 满分网
(III)为改进食堂服务质量,现从x<3,y<3的五人中抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.
查看答案
已知函数manfen5.com 满分网,且函数y=f(x)的图象的一个对称中心为manfen5.com 满分网
(I)求a和函数f(x)的单调递减区间;
(II)在三角形ABC中,角A,B,C的对边分别是a,b,c,满足manfen5.com 满分网,求函数f(A)的取值范围.
查看答案
给出以下结论:
①甲从四面体中任意选择一条棱,乙也从该四面体中任意选择一条棱,则所得的两条棱所在的直线是异面直线的概率是manfen5.com 满分网
②关于x的不等式manfen5.com 满分网恒成立,则a的取值范围是manfen5.com 满分网
③若关于x的方程manfen5.com 满分网上没有实数根,则k的取值范围是k≥2;
④函数f(x)=ex-x-2(x≥0)有一个零点.
其中正确的结论是    (填上所有正确结论的序号) 查看答案
抛物线manfen5.com 满分网的焦点与双曲线manfen5.com 满分网的上焦点重合,则m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.