满分5 > 高中数学试题 >

已知 (1)求函数f(x)的单调区间; (2)若关于x的方程f(x)-a=0恰有...

已知manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若关于x的方程f(x)-a=0恰有一个实数解,求实数a的取值范围;
(3)已知数列manfen5.com 满分网,若不等式f(a1)+f(a2)+f(a3)+…+f(a2009)≤x-ln(x-p)在x∈(p,+∞)时恒成立,求实数p的最小值.
(1)当是常数,不是单调函数,在0≤x≤3上解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间; (2)由(1)知函数的最值,要使方程f(x)-a=0恰有一个实数解,表示直线y=a与函数f(x)的图象有且只有一个交点,从而求出a的范围; (3)先求出时f(a1)+f(a2)+f(a3)+…+f(a2009)的值,然后利用函数图象与切线的位置关系证明f(a1)+f(a2)+f(a3)+…+f(a2009)≤6027,最后求出x-ln(x-p)的最小值,时最小值大于等于6027即可. 【解析】 (1)当是常数,不是单调函数; 当0≤x≤3时,f(x)=, 令f'(x)>0解得x∈(0,) 与f'(x)<0解得x∈(,3) ∴f(x)的单调增区间是(0,) f(x)的单调减区间是(,3) (2)由(1)知, 则方程f(x)-a=0恰有一个实数解 表示直线y=a与函数f(x)的图象有且只有一个交点 则<a<3,或a= (3)时f(a1)+f(a2)+f(a3)+…+f(a2009)=6027 f(x)=在x=处的切线为y= 则有成立 ∴f(a1)+f(a2)+f(a3)+…+f(a2009)≤6027 设g(x)=x-ln(x-p),g'(x)>0解得x>p+1 g'(x)<0解得p<x<p+1,∴g(x)的最小值为p+1 只需p+1≥6027 ∴p的最小值为6026
复制答案
考点分析:
相关试题推荐
已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且manfen5.com 满分网
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求manfen5.com 满分网的最大值.
查看答案
manfen5.com 满分网如图1所示,在边长为12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1,CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1,请在图2中解决下列问题:
(1)求证:AB⊥PQ;
(2)在底边AC上有一点M,满足AM;MC=3:4,求证:BM∥平面APQ.
(3)求直线BC与平面APQ所成角的正弦值.
查看答案
一个口袋中有2个白球和n个红球(n≥2,且n∈N*),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(1)试用含n的代数式表示一次摸球中奖的概率P;
(2)若n=3,求三次摸球恰有一次中奖的概率;
(3)记三次摸球恰有一次中奖的概率为f(p),当n为何值时,f(p)最大.
查看答案
已知数列{an}中,a1=1,且满足递推关系an+1=manfen5.com 满分网(m∈N*
(1)当m=1时,求数列{an}的通项an
(2)当m∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围.
查看答案
已知函数f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根.
其中真命题的序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.