满分5 > 高中数学试题 >

已知:函数f(x)=x3-6x+5,x∈R, (1)求:函数f(x)的单调区间和...

已知:函数f(x)=x3-6x+5,x∈R,
(1)求:函数f(x)的单调区间和极值;
(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;
(3)当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求:实数k的取值范围.
(1)先求函数的导数,令导数等于0,求出极值点,再列表判断极值点左右两侧导数的正负,当左正右负时有极大值,当左负右正时有极小值,且在某区间导数大于0时,此区间为函数的增区间,在某区间导数小于0时,此区间为函数的减区间. (2)由(1)知函数f(x)的大致图象,然后将关于x的方程f(x)=a有3个不同实根,转化为y=f(x)图象与直线y=a有3个不同交点,数形结合解决问题 (3)先将f(x)≥k(x-1)恒成立,转化为k≤x2+x-5在(1,+∞)上恒成立,进而转化为求函数g(x)=x2+x-5在(1,+∞)上的值域即可 【解析】 (1)求函数f(x)=x3-6x+5的导数,得f'(x)=3(x2-2), 令f'(x)=0,即3(x2-2)=0,解得, 列表讨论f′(x)的符号,得 x f'(x) + - + f(x) ↗ 极大值 ↘ 极小值 ↗ ∴f(x)的单调递增区间是,,单调递减区间是, 当x=-时,函数有极大值为5+4,当x=时,函数有极小值为5-4 (2)由(1)的分析可知y=f(x)图象的大致形状及走向如图: 若关于x的方程f(x)=a有3个不同实根,即y=f(x)图象与直线y=a有3个不同交点, 由图数形结合可得 (3)f(x)≥k(x-1)即(x-1)(x2+x-5)≥k(x-1). ∵x>1,∴k≤x2+x-5在(1,+∞)上恒成立, 令,则g(x)在(1,+∞)上是增函数, ∴g(x)>g(1)=-3, ∴k≤-3.
复制答案
考点分析:
相关试题推荐
已知θ∈(0,π),且sinθ,cosθ是方程manfen5.com 满分网的两根,求sin3θ+cos3θ及manfen5.com 满分网的值.
查看答案
分段函数manfen5.com 满分网可以表示为f(x)=|x|,分段函数manfen5.com 满分网可表示为manfen5.com 满分网,仿此,分段函数manfen5.com 满分网可以表示为f(x)=    查看答案
已知函数manfen5.com 满分网R),若x1+x2=1,则f(x1)+f(x2)=    ;若n∈N*,则manfen5.com 满分网=    查看答案
等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为    查看答案
已知函数y=f(x)的图象在M(1,f(1))处的切线方程是manfen5.com 满分网+2,f(1)+f′(1)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.