i是虚数单位,
=( )
A.-1
B.1
C.-i
D.i
考点分析:
相关试题推荐
已知数列a
n满足a
1+a
2+…+a
n=n
2(n∈N
*).
(1)求数列a
n的通项公式;
(2)对任意给定的k∈N
*,是否存在p,r∈N
*(k<p<r)使
成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为
.
查看答案
设函数f(x)=x
2,g(x)=mlnx(m>0),已知f(x)与g(x)有且仅有一个公共点.
(1)求m的值;
(2)对于函数h(x)=ax+b(a,b∈R),若存在a,b,使得关于x的不等式g(x)≤h(x)≤f(x)+1对于g(x)定义域上的任意实数x恒成立,求a的最小值以及对应的h(x)的解析式.
查看答案
为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图).在直线x=2的右侧,考察范围为到点B的距离不超过
km的区域;在直线x=2的左侧,考察范围为到A,B两点的距离之和不超过4
km的区域.
(Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图所示,设线段P
1P
2,P
2P
3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间.
查看答案
如图1,A(-1,0)、B(1,0)是椭圆
的长轴上两点,C,D分别为椭圆的短轴和长轴的端点,P是CD上的动点,若
的最大值与最小值分别为3、
.
(1)求椭圆的离心率;
(2)如图2,点F(1,0),动点Q、R分别在抛物线y
2=4x及椭圆
的实线部分上运动,且QR∥x轴,求△FQR的周长l的取值范围.
查看答案
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD为菱形,PD=8,AC=6,BD=8,AC∩BD=O,E是棱PB上的一点.
(1)求证:AC⊥DE;
(2)若BE:EP=1:2,求三棱锥O-BCE的体积;
(3)是否存在点E,使△ACE的面积最小?若存在,试求出△ACE面积最小值及对应线段BE的长;若不存在,请说明理由.
查看答案