由题意可知三棱锥P-ABC是正方体的一个角,扩展为正方体,两者的外接球是同一个球,求出球的半径,减去顶点P到平面ABC的距离,即可求出球心O到平面ABC的距离.
【解析】
空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=a,
则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,
所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,
球的直径即是正方体的对角线,长为 a,
所以这个球面的半径a,
球心O到平面ABC的距离为体对角线的,
即球心O到平面ABC的距离为a.
故答案为:a.