满分5 > 高中数学试题 >

设函数. (1)求函数f(x)的单调区间、极值. (2)若当x∈[a+1,a+2...

设函数manfen5.com 满分网
(1)求函数f(x)的单调区间、极值.
(2)若当x∈[a+1,a+2]时,恒有|f′(x)|≤a,试确定a的取值范围.
(1)对函数f(x)进行求导,根据导数大于0时原函数单调递增,导函数小于0时原函数单调递减可求单调区间进而求出极值点. (2)将(1)中所求的导函数f'(x)代入|f'(x)|≤a得到不等关系式,再由函数f'(x)的单调性求出最值可得解. 【解析】 f'(x)=-x2+4ax-3a2.令f'(x)=-x2+4ax-3a2=0,得x=a或x=3a由表 可知:当x∈(-∞,a)时,函数f(x)为减函数,当x∈(3a,+∞)时.函数f(x)也为减函数; 当x∈(a,3a)时,函数f(x)为增函数. 当x=a时,f(x)的极小值为时,f(x)的极大值为b. (2)由|f'(x)|≤a,得-a≤-x2+4ax-3a2≤a. ∵0<a<1,∴a+1>2a,f'(x)=-x2+4ax-3a2在[a+1,a+2]上为减函数. ∴[f'(x)]max=f'(a+1)=2a-1,[f'(x)]min=f'(a+2)=4a-4. 于是,问题转化为求不等式组的解.解得.又0<a<1,∴.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,直四棱柱ABCD-A1B1C1D1中,AB=AD=2,CB=CD=2 manfen5.com 满分网,AA1=manfen5.com 满分网,AB⊥BC,AC与BD交于点E.
(1)求证:BD⊥A1C;
(2)求二面角A1-BD-C1的大小;
(3)求异面直线AD与BC所成角的余弦值.
查看答案
某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)
(1)5次预报中恰有2次准确的概率;
(2)5次预报中至少有2次准确的概率;
(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.
查看答案
在锐角△ABC中,已知5manfen5.com 满分网manfen5.com 满分网=4|manfen5.com 满分网|•|manfen5.com 满分网|,设manfen5.com 满分网=(sinA,sinB),manfen5.com 满分网=(cosB,-cosA)且manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网
求:(1)sin(A+B)的值;(2)tanA的值.
查看答案
在△ABC中,若(cosA+sinA)(cosB+sinB)=2,则角C=    查看答案
(理科)已知manfen5.com 满分网,其中0<c<b<a<1,则x,y,z的大小关系为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.