如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
,∠PAB=60°.
(Ⅰ)证明AD⊥平面PAB;
(Ⅱ)求异面直线PC与AD所成的角的大小;
(Ⅲ)求二面角P-BD-A的大小.
考点分析:
相关试题推荐
已知函数f(x)的导数f′(x)=3x
2-3ax,f(0)=b.a,b为实数,1<a<2.
(Ⅰ)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(Ⅲ)设函数F(x)=(f′(x)+6x+1)•e
2x,试判断函数F(x)的极值点个数.
查看答案
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是
,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利?
查看答案
已知函数g(x)=
-
sinxcos-
x的图象按向量
=(-
,
)平移得到函数f(x)=acos
2(x+
)+b的图象.
(1)求实数a、b的值;
(2)设函数φ(x)=g(x)-
f(x),x∈[0,
],求函数φ(x)的单调递增区间和最值.
查看答案
如图,已知椭圆
的左、右准线分别为l
1,l
2,且分别交x轴于C,D两点,从l
1上一点A发出一条光线经过椭圆的左焦点F被x轴反射后与交于点B,若AF⊥BF,且∠ABD=75°,则椭圆的离心率等于
.
查看答案
设实数a、b满足
,则9a
2+4b
2的最大值是
.
查看答案