满分5 > 高中数学试题 >

如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,...

manfen5.com 满分网如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(Ⅰ)设E是DC的中点,求证:D1E∥平面A1BD;
(Ⅱ)求二面角A1-BD-C1的余弦值.
(1)由题意及图形所给的线段大小之间的关系,利用线线平行进而得到线面平行; (2)利用图形中两两垂直的线和题中所给的线段的大小,建立空间直角坐标系,利用向量的知识求出二面角的大小. 【解析】 (I)连接BE,则四边形DABE为正方形, ∴BE=AD=A1D1,且BE∥AD∥A1D1, ∴四边形A1D1EB为平行四边形,∴D1E∥A1B. ∵D1E⊄平面A1BD,A1B⊂平面A1BD, ∴D1E∥平面A1BD. (II)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系, 不妨设DA=1,则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2). ∴. 设为平面A1BD的一个法向量, 由得 取z=1,则 设为平面C1BD的一个法向量, 由得, 取z1=1,则 ∵.. 由于该二面角A1-BD-C1为锐角, 所以所求的二面角A1-BD-C1的余弦值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E,F分别为CD,PB的中点.
(1)求证:EF⊥面PAB;
(2)若AB=manfen5.com 满分网BC,求AC与面AEF所成的角.
查看答案
已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x,y),且x1<x<x2,使得曲线在点Q处的切线ℓ∥P1P2,则称ℓ为弦P1P2的伴随切线.特别地,当x=λx1+(1-λ)x2(0<λ<1)时,又称ℓ为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有manfen5.com 满分网伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
查看答案
在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在x轴和y轴上(如图),且OC=1,OA=a+1(a>1),点D在边OA上,满足OD=a.分别以OD、OC为长、短半轴的椭圆在矩形及其内部的部分为椭圆弧CD.直线l:y=-x+b与椭圆弧相切,与OA交于点E.
(1)求证:b2-a2=1;
(2)设直线l将矩形OABC分成面积相等的两部分,求直线l的方程;
(3)在(2)的条件下,设圆M在矩形及其内部,且与l和线段EA都相切,求面积最大的圆M的方程.

manfen5.com 满分网 查看答案
如图l,等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图2,将△ABE沿AE折起,使二面角B-AE-C成直二面角,连接BC,BD,P是棱BC的中点.
(1)在图2中求证:AE⊥BD;’
(2)EP是否平行平面BAD?并说明理由.
(3)求直线EB与平面BCD所成的角的余弦值.

manfen5.com 满分网 查看答案
某校篮球选修课的考核方式采用远距离投离篮进行,规定若学生连中两球,则通过考核,终止投篮;否则继续投篮,直至投满四次终止.现有某位同学每次投篮的命中率为manfen5.com 满分网,且每次投篮相互经独立.
(I)该同学投中二球但未能通过考核的概率;
(II)现知该校选修篮球的同学共有27位,每位同学每次投篮的命中率为manfen5.com 满分网,且每次投篮相互独立.在这次考核中,记通过的考核的人数为X,求X的期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.