满分5 > 高中数学试题 >

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3. (...

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线manfen5.com 满分网的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.
(1)依题意可设椭圆方程为,由题设解得a2=3,故所求椭圆的方程为. (2)设P为弦MN的中点,由得(3k2+1)x2+6mkx+3(m2-1)=0,由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1.由此可推导出m的取值范围. 【解析】 (1)依题意可设椭圆方程为, 则右焦点F()由题设 解得a2=3故所求椭圆的方程为; (2)设P为弦MN的中点,由 得(3k2+1)x2+6mkx+3(m2-1)=0 由于直线与椭圆有两个交点,∴△>0,即m2<3k2+1① ∴从而 ∴又|AM|=||AN|,∴AP⊥MN, 则即2m=3k2+1② 把②代入①得2m>m2解得0<m<2由②得解得. 故所求m的取范围是().
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
查看答案
将函数manfen5.com 满分网在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.
查看答案
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:
(1)仓库面积S的最大允许值是多少?
(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求证:AE∥平面BFD.

manfen5.com 满分网 查看答案
向量manfen5.com 满分网,设函数g(x)=manfen5.com 满分网manfen5.com 满分网(a∈R,且a为常数).
(1)若x为任意实数,求g(x)的最小正周期;
(2)若g(x)在manfen5.com 满分网上的最大值与最小值之和为7,求a的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.