满分5 > 高中数学试题 >

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N* (...

数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设manfen5.com 满分网,是否存在最大的整数m,使得对任意n∈N*,均有manfen5.com 满分网成立?若存在,求出m的值:若不存在,请说明理由.
(1)由条件an+2=2an+1-an,可得,从而{an}为等差数列,利用a1=8,a4=2可求公差,从而可求数列{an}的通项公式; (2)利用10-2n≥0则n≤5,确定数列中的正数项,再进行分类讨论; (3先裂项求和,再根据对任意n∈N*成立,得对任意n∈N*成立,利用的最小值是,可知,从而存在最大整数m=7. 【解析】 (1)由题意,,∴{an}为等差数列,设公差为d, 由题意得2=8+3d⇒d=-2,∴an=8-2(n-1)=10-2n (2)若10-2n≥0则n≤5,n≤5时,Sn=|a1|+|a2|+…+|an|= n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=S5-(Sn-S5)=2S5-Sn=n2-9n+40 故 (3)∵∴ 若对任意n∈N*成立,即对任意n∈N*成立,∵的最小值是,∴,∴m的最大整数值是7. 即存在最大整数m=7,使对任意n∈N*,均有
复制答案
考点分析:
相关试题推荐
数列lg1000,lg,lg,…lg,…的前    项和为最大? 查看答案
设Sn为等差数列{an}的前n项和,S4=14,S10-S7=30,则S9=    查看答案
等比数列各项均为正数,且它的任何一项都等于它的后面两项的和,则公比q为    查看答案
等差数列{an}中,a3+a7-a10=8,a11-a4=4,则S13=    查看答案
已知等差数列{an},公差manfen5.com 满分网,前100项和S100=145,则a1+a3+a5+…+a99的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.