满分5 > 高中数学试题 >

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*. (Ⅰ)证明数...

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
(Ⅰ)整理题设an+1=4an-3n+1得an+1-(n+1)=4(an-n),进而可推断数列{an-n}是等比数列. (Ⅱ)由(Ⅰ)可数列{an-n}的通项公式,进而可得{an}的通项公式根据等比和等差数列的求和公式,求得Sn. (Ⅲ)把(Ⅱ)中求得的Sn代入Sn+1-4Sn整理后根据证明原式. 【解析】 (Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*. 又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列. (Ⅱ)由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n. 所以数列{an}的前n项和. (Ⅲ)证明:对任意的n∈N*,=. 所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=1-5+9-13+…+(-1)n-1(4n-3),求S15+S22-S31的值.
查看答案
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设manfen5.com 满分网,是否存在最大的整数m,使得对任意n∈N*,均有manfen5.com 满分网成立?若存在,求出m的值:若不存在,请说明理由.
查看答案
数列lg1000,lg,lg,…lg,…的前    项和为最大? 查看答案
设Sn为等差数列{an}的前n项和,S4=14,S10-S7=30,则S9=    查看答案
等比数列各项均为正数,且它的任何一项都等于它的后面两项的和,则公比q为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.