满分5 > 高中数学试题 >

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+...

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13
(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列manfen5.com 满分网的前n项和Sn
(Ⅰ)设{an}的公差为d,{bn}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{an}、{bn}的通项公式. (Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和Sn. 【解析】 (Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且 解得d=2,q=2. 所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1. (Ⅱ).,①,② ②-①得,===.
复制答案
考点分析:
相关试题推荐
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
查看答案
已知数列{an}的前n项和Sn=1-5+9-13+…+(-1)n-1(4n-3),求S15+S22-S31的值.
查看答案
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an,n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设manfen5.com 满分网,是否存在最大的整数m,使得对任意n∈N*,均有manfen5.com 满分网成立?若存在,求出m的值:若不存在,请说明理由.
查看答案
数列lg1000,lg,lg,…lg,…的前    项和为最大? 查看答案
设Sn为等差数列{an}的前n项和,S4=14,S10-S7=30,则S9=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.