满分5 > 高中数学试题 >

设椭圆C:的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x...

设椭圆C:manfen5.com 满分网的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且manfen5.com 满分网
(1)求椭圆C的离心率;
(2)若过A、Q、F2三点的圆恰好与直线l:manfen5.com 满分网相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.


manfen5.com 满分网
(1)设Q(x,0),由F2(c,0),A(0,b)结合向量条件及向量运算得出关于a,c的等式,从而求得椭圆的离心率即可; (2)由(1)知a,c的一个方程,再利用△AQF的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程; (3)由(Ⅱ)知直线l:y=k(x-1),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P且m的取值范围. 【解析】 (1)设Q(x,0),由F2(c,0),A(0,b) 知 ∵,∴, 由于即F1为F2Q中点. 故∴b2=3c2=a2-c2, 故椭圆的离心率,(3分) (2)由(1)知,得于是F2(a,0)Q, △AQF的外接圆圆心为(-a,0),半径r=|FQ|=a 所以,解得a=2,∴c=1,b=, 所求椭圆方程为,(6分) (3)由(Ⅱ)知F2(1,0)l:y=k(x-1) 代入得(3+4k2)x2-8k2x+4k2-12=0 设M(x1,y1),N(x2,y2) 则,y1+y2=k(x1+x2-2),(8分) =(x1+x2-2m,y1+y2) 由于菱形对角线垂直,则 故k(y1+y2)+x1+x2-2m=0 则k2(x1+x2-2)+x1+x2-2m=0k2(10分) 由已知条件知k≠0且k∈R∴∴ 故存在满足题意的点P且m的取值范围是.(12分)
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,且a≠0,a≠1).
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(Ⅲ)设cn=logaa2n-1,求数列{a2n•cn}的前n项和Tn
查看答案
设函数f(x)=ax+2,g(x)=a2x2-lnx+2,其中a∈R,x>0.
(Ⅰ)若a=2,求曲线y=g(x)在点(1,g(1))处的切线方程;
(Ⅱ)是否存在负数a,使f(x)≤g(x)对一切正数x都成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案
如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,AB⊥AC,ED⊥DG,EF∥DG,且AB=AD=DE=DG=2,AC=EF=1.
(Ⅰ)求证:BF∥平面ACGD;
(Ⅱ)求二面角A-EG-D的正切值;
(Ⅲ) 求六面体ABCDEFG的体积.

manfen5.com 满分网 查看答案
一个盒子中有5只同型号的灯泡,其中有3只合格品,2只不合格品.现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(Ⅰ)求第一次取到不合格品,且第二次取到的是合格品的概率;
(Ⅱ)求至少有一次取到不合格品的概率.
查看答案
在△ABC中,设内角A、B、C的对边分别为a、b、c,manfen5.com 满分网
(1)求角C的大小;
(2)若manfen5.com 满分网且sinA=2sinB,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.