满分5 > 高中数学试题 >

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分...

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)分别求数列{an},{bn}的通项公式an,bn
(Ⅱ)设manfen5.com 满分网,若manfen5.com 满分网恒成立,求c的最小值.
(Ⅰ)设d、q分别为数列{an}、数列{bn}的公差与公比,a1=1.由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{bn}的前三项,从而可得(2+d)2=2(4+2d),根据an+1>an,可确定公差的值,从而可求数列{an}的通项,进而可得公比q,故可求{bn}的通项公式 (Ⅱ)表示出,利用错位相减法求和,进而问题可转化为恒成立,利用在N*是单调递增的,即可求得c的最小值. 【解析】 (Ⅰ)设d、q分别为数列{an}、数列{bn}的公差与公比,a1=1. 由题可知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2,+d,4+2d是等比数列{bn}的前三项, ∴(2+d)2=2(4+2d)⇒d=±2. ∵an+1>an, ∴d>0. ∴d=2, ∴an=2n-1(n∈N*). 由此可得b1=2,b2=4,q=2, ∴bn=2n(n∈N*). (Ⅱ),① ∴.② ①-②,得. ∴. ∴. ∵在N*是单调递增的, ∴. ∴ ∴满足条件恒成立的最小整数值为c=3.
复制答案
考点分析:
相关试题推荐
某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有淡季旺季之分.通过市场调查发现:
①销售量r(x)(件)与衬衣标价x(元/件)在销售旺季近似地符合函数关系:r(x)=kx+b1;在销售淡季近似地符合函数关系:r(x)=kx+b2,其中k<0,b1、b2>0且k、b1、b2为常数;
②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;
③若称①中r(x)=0时的标价x为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.
请根据上述信息,完成下面问题:
(Ⅰ)填出表格中空格的内容;
数量关系

销售季节
标价
(元/件)
销售量r(x)(件)
(含k、b1或b2)
不同季节的销售总利润y(元)
与标价x(元/件)的函数关系式
旺  季xr(x)=kx+b1
淡  季x
(Ⅱ)在销售淡季,该商场要获得最大销售利润,衬衣的标价应定为多少元才合适?
查看答案
已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实根分别在区间(-3,-2)和(0,1)内,求实数b的取值范围.
查看答案
如图,已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,点M、N分别在侧棱PD、PC上,且PM=MD.
(1)求证:AM⊥平面PCD;
(2)若manfen5.com 满分网,求平面AMN与平面PAB的所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)若x∈[0,π],求函数f(x)的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(C)=1,且b2=ac,求sinA的值.
查看答案
定义在(-1,1)上的函数f(x)满足:f(-x)+f(x)=0,当x∈(-1,0)时函数f(x)的导函数f'(x)<0恒成立.如果f(1-a)+f(1-a2)>0,则实数a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.