满分5 > 高中数学试题 >

已知函数f(x)=x3+ax2+bx+c在x=-与x=1时都取得极值 (1)求a...

已知函数f(x)=x3+ax2+bx+c在x=-manfen5.com 满分网与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
(1)求出f′(x),因为函数在x=-与x=1时都取得极值,所以得到f′(-)=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间; (2)根据(1)函数的单调性,由于x∈[-1,2]恒成立求出函数的最大值值为f(2),代入求出最大值,然后令f(2)<c2列出不等式,求出c的范围即可. 解;(1)f(x)=x3+ax2+bx+c,f'(x)=3x2+2ax+b 由解得, f'(x)=3x2-x-2=(3x+2)(x-1),函数f(x)的单调区间如下表: x (-∞,-) - (-,1) 1 (1,+∞) f′(x) + - + f(x) ↑ 极大值 ↓ 极小值 ↑ 所以函数f(x)的递增区间是(-∞,-)和(1,+∞),递减区间是(-,1). (2), 当x=-时,f(x)=+c为极大值,而f(2)=2+c,所以f(2)=2+c为最大值. 要使f(x)<c2对x∈[-1,2]恒成立,须且只需c2>f(2)=2+c. 解得c<-1或c>2.
复制答案
考点分析:
相关试题推荐
(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若manfen5.com 满分网
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式manfen5.com 满分网
(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.
查看答案
已知函数f(x)=log2(x+manfen5.com 满分网-a)的定义域为A,值域为B.
(1)当a=4时,求集合A;
(2)设I=R为全集,集合M={x|y=manfen5.com 满分网},若(CIM)∪(CIB)=Φ,求实数a的取值范围.
查看答案
设A={x|x2-2x-8<0},B={x|x2+2x-3>0},
(1)若C={x|x2-3ax+2a2<0},试求实数a的取值范围,使C⊆A且C⊆B;
(2)若C={x|x2-3ax+2a<0},试求实数a的取值范围,使C⊆A且C⊆B.
查看答案
已知:函数f(x)=ax+manfen5.com 满分网+c(a、b、c是常数)是奇函数,且满足f(1)=manfen5.com 满分网,f(2)=manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,manfen5.com 满分网)上的单调性并说明理由;
(Ⅲ)试求函数f(x)在区间(0,+∞)上的最小值.
查看答案
设命题P:函数y=loga(x+1)在(0,+∞)为减函数.命题Q:曲线y=x2+(2a-3)x+1与x轴有两个不同的交点.若“P且Q”为假,“P或Q”为真,求a的范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.