满分5 > 高中数学试题 >

已知二次函数f(x)=x2-16x+p+3. (1)若函数在区间[-1,1]上存...

已知二次函数f(x)=x2-16x+p+3.
(1)若函数在区间[-1,1]上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,f(x)的值域为区间D,且D的长度为12-q.(注:区间[a,b](a<b)的长度为b-a).
(1)根据解析式判断f(x)在区间[-1,1]上递减,由函数零点的几何意义知f(-1)•f(1)≤0,再代入方程后求不等式得解集,即是p的范围; (2)先假设存在常数q(q≥0)满足题意,根据对称轴和区间[q,10]的关系进行分类,再根据每种情况中的二次函数图象求出函数的值域,利用区间长度求出q的值,注意验证是否在确定的范围内. 【解析】 (1)∵二次函数f(x)=x2-16x+p+3的对称轴是x=8, ∴函数f(x)在区间[-1,1]上单调递减, 则函数f(x)在区间[-1,1]上存在零点须满足f(-1)•f(1)≤0. 即(1+16+p+3)(1-16+p+3)≤0,解得-20≤p≤12. (2)假设存在常数q(q≥0)满足题意,分三种情况求【解析】 ①当时,即0≤q≤6时, 当x=8时,取到最小值f(8);当x=q时,取到最大值f(q), ∴f(x)的值域为:[f(8),f(q)],即[p-61,q2-16q+p+3]. ∴区间长度为q2-16q+p+3-(p-61)=q2-16q+64=12-q. ∴q2-15q+52=0,∴,经检验不合题意,舍去,故. ②当时,即6≤q<8时, 当x=8时,取到最小值f(8);当x=10时,取到最大值f(10), ∴f(x)的值域为:[f(8),f(10)],即[p-61,p-57] ∴区间长度为p-57-(p-61)=4=12-q,∴q=8.经检验q=8不合题意,舍去. ③当q≥8时,函数f(x)在[q,10]上单调递增, ∴f(x)的值域为:[f(q),f(10)],即[q2-16q+p+3,p-57]. ∴区间长度为p-57-(q2-16q+p+3)=-q2-16q-60=12-q, ∴q2-17q+72=0,∴q=8或q=9.经检验q=8或q=9满足题意. 综上知,存在常数q=8或q=9, 当x∈[q,10]时,f(x)的值域为区间D,且D的长度为12-q.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+bx+c在x=-manfen5.com 满分网与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
查看答案
(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若manfen5.com 满分网
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式manfen5.com 满分网
(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.
查看答案
已知函数f(x)=log2(x+manfen5.com 满分网-a)的定义域为A,值域为B.
(1)当a=4时,求集合A;
(2)设I=R为全集,集合M={x|y=manfen5.com 满分网},若(CIM)∪(CIB)=Φ,求实数a的取值范围.
查看答案
设A={x|x2-2x-8<0},B={x|x2+2x-3>0},
(1)若C={x|x2-3ax+2a2<0},试求实数a的取值范围,使C⊆A且C⊆B;
(2)若C={x|x2-3ax+2a<0},试求实数a的取值范围,使C⊆A且C⊆B.
查看答案
已知:函数f(x)=ax+manfen5.com 满分网+c(a、b、c是常数)是奇函数,且满足f(1)=manfen5.com 满分网,f(2)=manfen5.com 满分网
(Ⅰ)求a、b、c的值;
(Ⅱ)试判断函数f(x)在区间(0,manfen5.com 满分网)上的单调性并说明理由;
(Ⅲ)试求函数f(x)在区间(0,+∞)上的最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.