在直角梯形P
1DCB中,P
1D∥CB,CD∥P
1D且P
1D=6,BC=3,DC=
,A是P
1D的中点,沿AB把平面P
1AB折起到平面PAB的位置,使二面角P-CD-B成45°角,设E、F分别是线段AB、PD的中点.
(1)求证:AF∥平面PEC;
(2)求平面PEC和平面PAD所成的锐二面角的大小;
(3)求点D到平面PEC的距离.
考点分析:
相关试题推荐
如图,平面VAD⊥平面ABCD,△VAD是等边三角形,ABCD是矩形,AB:AD=
:1,F是AB的中点.
(1)求VC与平面ABCD所成的角;
(2)求二面角V-FC-B的度数;
(3)当V到平面ABCD的距离是3时,求B到平面VFC的距离.
查看答案
已知函数
.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)设m>0,求f(x)在[m,2m]上的最大值;
(III)试证明:对∀n∈N
*,不等式
恒成立.
查看答案
已知抛物线y=x
2+2x+b(x∈R)与坐标轴有三个交点,经过这三点的圆记为M.
(1)求实数b的取值范围;
(2)设抛物线与x轴的交点从左到右分别为A、B,与y轴的交点为C,求A、B、C三点的坐标;
(3)设直线l是抛物线在点A处的切线,试判断直线l是否也是圆M的切线?并说明理由.
查看答案
某地区有荒山2200亩,从2002年开始每年年初在荒山上植树造林,第一年植树100亩,以后每年比上一年多植树50亩.
(1)若所植树全部成活,则到哪一年可以将荒山全部绿化?
(2)右图是某同学设计的解决问题(1)的程序框图,则框图中p,q,r处应填上什么条件?
(3)若每亩所植树苗木材量为2立方米,每年树木木材量的自然增长率为20%,那么到全部绿化后的那一年年底,该山木材总量是多少?(精确到1立方米,1.2
8≈4.3)
查看答案
如图,△ABC内接于圆O,AB是圆O的直径,AB=2,BC=1,设AE与平面ABC所成的角为θ,且tanθ=
,四边形DCBE为平行四边形,DC⊥平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD⊥平面ADE;
(3)在CD上是否存在一点M,使得MO∥平面ADE?证明你的结论.
查看答案