满分5 > 高中数学试题 >

已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上...

已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=manfen5.com 满分网,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD(如图2)
(I)证明:平面PAD⊥PCD;
(II)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA:VMACB=2:1;
(III)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.

manfen5.com 满分网
(I)由已知中CD⊥AD及面PAD⊥面ABCD,我们根据面面垂直的性质定理得到CD⊥平面PAD,再由面面垂直的判定定理得到平面PAD⊥PCD; (II)根据(I)的结论,平面PAB⊥平面ABCD,在PB上取一点M,作MN⊥AB,则MN⊥平面ABCD,利用体积公式,分别计算VPDCMA,VMACB,再根据VPDCMA:VMACB=2:1,即可求出满足条件的M为PB的中点; (III)以A为原点,AD、AB、AP所在直线为x,y,z轴,建立如如图所示的空间直角坐标系,求出相关顶点的坐标,进而求出直线AM的方向向量及平面PCD的法向量,判定两个向量是否垂直,即可判断直线AM是否平行面PCD. 【解析】 (I)证明:依题意知:CD⊥AD.又∵面PAD⊥面ABCD∴DC⊥平面PAD.(2分) ∴平面PAD⊥PCD; (II)由(I)知PA⊥平面ABCD ∴平面PAB⊥平面ABCD.(4分) 在PB上取一点M,作MN⊥AB,则MN⊥平面ABCD, 设MN=h 则(6分) 要使 即M为PB的中点; (III)以A为原点,AD、AB、AP所在直线为x,y,z轴, 建立如如图所示的空间直角坐标系 则A(0,0,0),B(0,2,0), C(1,1,0),D(1,0,0), P(0,0,1),M(0,1,) 由(I)知平面PAD⊥平面PCD,作AQ⊥PD,则的法向量.(10分) 又∵△PAD为等腰Rt△∴ 因为 所以AM与平面PCD不平行.(13分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点.
(I)求证:CM⊥EM;
(Ⅱ)求CM与平面CDE所成的角.
查看答案
如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ)求二面角A-BD-C的大小;
(Ⅲ)求点C到平面ABD的距离.

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,D、E分别为AC、AA1的中点.点F为
棱AB上的点.
(Ⅰ)当点F为AB的中点时.
(1)求证:EF⊥AC1
(2)求点B1到平面DEF的距离.
(Ⅱ)若二面角A-DF-E的大小为manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,manfen5.com 满分网
(1)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(2)求面ASD与面BSC所成二面角的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,正三棱柱ABC-A1B1C1中,E是AC中点.
(1)求证:平面BEC1⊥平面ACC1A1
(2)求证:AB1∥平面BEC1
(3)若manfen5.com 满分网,求二面角E-BC1-C的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.