满分5 > 高中数学试题 >

设A={x|y=},B={y|y=2x-x2},则A∪B=( ) A.R B.(...

设A={x|y=manfen5.com 满分网},B={y|y=2x-x2},则A∪B=( )
A.R
B.(-∞,1]
C.[1,+∞)
D.(-∞,-2]∪[1,+∞)
根据二次根式下大于等于0求出集合A,根据二次函数的性质求出值域得到集合B,最后根据并集的定义求出所求即可. 【解析】 ∵x2+x-2≥0 ∴x≥1或x≤-2 即A={x|y=}={x|x≥1或x≤-2} ∵y=2x-x2=-(x-1)2+1≤1 ∴B={y|y=2x-x2}={y|y≤1}, ∴A∪B=R 故选A.
复制答案
考点分析:
相关试题推荐
如图,在函数y=x3-x的图象上取4个点Ai(xi,yi),过点Ai作切线li(i=1,2,3,4),如果l1∥l3,且l1,l2,l3,l4围成的图形是矩形记为M.
(1)证明四边形A1A2A3A4是平行四边形;
(2)问矩形M的短边与长边的比是否有最大值,若有,求l1与l2的斜率,若没有,请证明.

manfen5.com 满分网 查看答案
设函数f(x)=x2,g(x)=alnx+bx(a>0).
(Ⅰ)若f(1)=g(1),f'(1)=g'(1),求F(x)=f(x)-g(x)的极小值;
(Ⅱ)在(Ⅰ)的条件下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值.若不存在,说明理由.
(Ⅲ)设G(x)=f(x)+2-g(x)有两个零点x1,x2,且x1,x,x2成等差数列,试探究G'(x)值的符号.
查看答案
已知椭圆C:manfen5.com 满分网的离心率为manfen5.com 满分网,过坐标原点O且斜率为manfen5.com 满分网的直线l与C相交于A,B,|AB|=manfen5.com 满分网
(1)求a,b的值;
(2)若动圆(x-m)2+y2=1与椭圆C和直线l都没有公共点,试求m的取值范围.
查看答案
已知在△ABC中,点A、B的坐标分别为(-2,0)和(2,0),点C在x轴上方.
(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;
(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ?请说明理由.
查看答案
设不等式组 manfen5.com 满分网表示的平面区域为D.区域D内的动点P到直线x+y=0和直线x-y=0的距离之积为2.记点P的轨迹为曲线C.过点manfen5.com 满分网的直线l与曲线C交于A、B两点.若以线段AB为直径的圆与y轴相切,求直线l的斜率.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.