满分5 > 高中数学试题 >

如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与...

如图,斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,低面ABC是边长为2的正三角形,其重心为G点(重心为三条中线的交点).E是线段BC1上一点且manfen5.com 满分网
(1)求证:GE∥侧面AA1B1B;
(2)求平面B1GE与底面ABC所成锐二面角的大小.

manfen5.com 满分网
(1)欲证GE∥侧面AA1B1B,根据直线与平面平行的判定定理可知只需证GE与侧面AA1B1B 内一直线平行,延长B1E交BC于F,而GE∥AB1,GE⊄侧面AA1B1B,AB1⊂侧面AA1B1B,满足定理的条件; (2)过B1作B1H⊥AB,垂足为H,在底面ABC内,过H作HT⊥AF,垂足为T,连B1T,根据二面角平面角的定义可知∠B1TH为所求二面角的平面角,在Rt△B1HT中求出此角的正切值即可. 【解析】 (1)延长B1E交BC于F, ∵△B1EC1∽△FEB,BE=EC1 ∴BF=B1C1=BC,从而F为BC的中点. (2分) ∵G为△ABC的重心, ∴A、G、F三点共线,且=, ∴GE∥AB1, 又GE⊄侧面AA1B1B,AB1⊂侧面AA1B1B, ∴GE∥侧面AA1B1B (4分) (2)在侧面AA1B1B内,过B1作B1H⊥AB,垂足为H, ∵侧面AA1B1B⊥底面ABC, ∴B1H⊥底面ABC.又侧棱AA1与底面ABC成60°的角,AA1=2, ∴∠B1BH=60°,BH=1,B1H=(6分) 在底面ABC内,过H作HT⊥AF,垂足为T,连B1T.由三垂线定理有B1T⊥AF,又平面B1GE与底面ABC的交线为AF, ∴∠B1TH为所求二面角的平面角(8分) ∴AH=AB+BH=3,∠HAT=30°, ∴HT=AHsin30°=, 在Rt△B1HT中,tan∠B1TH=(10分) 从而平面B1GE与底面ABC所成锐二面角的大小为arctan(12分)
复制答案
考点分析:
相关试题推荐
某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求ξ的分布及数学期望;
(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.
查看答案
已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为manfen5.com 满分网,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.
(1)第一小组做了三次实验,求至少两次实验成功的概率;
(2)第二小组进行试验,到成功了4次为止,求在第四次成功之前共有三次失败,且恰有两次连续失败的概率.
查看答案
某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下面是某日水深的数据:
t(小时)3691215182124
y(米)10.013.09.97.010.013.010.17.010.0
经长期观察:y=f(t)的曲线可近似看成函数y=Asinωt+b的图象(A>0,ω>0).
(1)求函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?
查看答案
已知函数manfen5.com 满分网
(1)求f(x)的定义域;
(2)求该函数的反函数f-1(x);
(3)判断f-1(x)的奇偶性.
查看答案
如果过点(0,1)斜率为k的直线l与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,那么直线l的斜率k=    ;不等式组manfen5.com 满分网表示的平面区域的面积是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.