由于函数f(x)为分段函数,故要使其为单调增函数,需每段上为增函数且x<1时的最大值小于或等于x≥1时的最小值,因此先求函数为增函数的充要条件,再比较已知集合与充要条件集合的包含关系即可判断其充要性
【解析】
函数为分段函数,
当x≥1时,为二次函数,图象是开口向上,对称轴为x=-的抛物线,x=1时,y1=a+2
当x<1时,为二次函数,图象是开口向下,对称轴为x=-的抛物线,x→1时,y2→a+2
函数f(x)在R上单调递增的充要条件是,即,即
∵[-2,0]⊋[-,0]
∴“-2≤a≤0”是“f(x)在R上单调递增”的 必要不充分条件
故答案为 必要不充分