满分5 > 高中数学试题 >

(填空题压轴题:考查函数的性质,字母运算等) 设函数f(x)的定义域为D,如果存...

(填空题压轴题:考查函数的性质,字母运算等) 
设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2011型增函数”,则实数a的取值范围是   
由题意可以得到再由定义存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.对所给的问题分自变量全为正,全为负,一正一负三类讨论,求出参数所满足的共同范围即可. 【解析】 ∵f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a, ∴ 又f(x)为R上的“2011型增函数”, 当x>0时,由定义有|x+2011-a|-2a>|x-a|-2a,即|x+2011-a|>|x-a|,其几何意义为到点a小于到点a-2011的距离,由于x>0故可知a+a-2011<0得a< 当x<0时,分两类研究,若x+2011<0,则有-|x+2011+a|+2a>-|x+a|+2a,即|x+a|>|x+2011+a|,其几何意义表示到点-a的距离小于到点-a-2011的距离,由于x<0,故可得-a-a-2011>0,得a<;若x+2011>0,则有|x+2011-a|-2a>-|x+a|+2a,即|x+a|+|x+2011-a|>4a,其几何意义表示到到点-a的距离与到点a-2011的距离的和大于4a,当a≤0时,显然成立,当a>0时,由于|x+a|+|x+2011+a|≥|-a-a+2011|=|2a-2011|,故有|2a-2011|>4a,必有2011-2a>4a,解得   综上,对x∈R都成立的实数a的取值范围是  故答案为:.
复制答案
考点分析:
相关试题推荐
已知边长为manfen5.com 满分网的正△ABC,点D,E分别在边AB,AC上,且DE∥BC,以DE为折痕,把△ADE折起至△A'DE,使点A'在平面BCED上的射影H始终落在BC边上,记manfen5.com 满分网,则S的取值范围为    查看答案
有一个正四面体,它的棱长为a,现用一张圆型的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为    查看答案
manfen5.com 满分网已知∠AOB=lrad,点Al,A2,…在OA上,B1,B2,…在OB上,其中的每一个实线段和虚线段氏均为1个单位,一个动点M从O点出发,沿着实线段和以O为圆心的圆弧匀速运动,速度为l单位/秒,则质点M到达A10点处所需要的时间为     秒. 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网满足|manfen5.com 满分网|=1,|manfen5.com 满分网|=|manfen5.com 满分网|,(manfen5.com 满分网)•(manfen5.com 满分网)=0.若对每一确定的manfen5.com 满分网,|manfen5.com 满分网|的最大值和最小值分别为m,n,则对任意manfen5.com 满分网,m-n的最小值是    查看答案
已知数列{an}的各项都是正整数,对于n=1,2,3…,有manfen5.com 满分网
若存在m∈N*,当n>m且an为奇数时,an恒为常数p,则p=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.