已知:矩形AEFD的两条对角线相交于点M(2,0),AE边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求矩形AEFD外接圆P的方程.
(2)△ABC是⊙P的内接三角形,其重心G的坐标是(1,1),求直线BC的方程.
考点分析:
相关试题推荐
如图,已知矩形ORTM内有5个全等的小正方形,其中顶点A、B、C、D在矩形ORTM的四条边上.
(1)若
,求x+y的值;
(2)若矩形ORTM的边长OR=7,OM=8,试求小正方形的边长;
(3)现向矩形ORTM内任意投出一个点P,求点P落入五个小正方形内的概率.
查看答案
已知正四面体ABCD的棱长为3cm.
(1)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(2)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.
查看答案
口袋中有质地、大小完全相同的5个球,编号分别为1、2、3、4、5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求两个编号的和为6的概率;
(2)求甲赢的事件发生的概率.
查看答案
已知正三角形PAD所在的平面与直角梯形ABCD垂直,AB⊥AD,AB∥CD,且AD=DC=2,AB=4.求证:
(1)AB⊥PD
(2)求点C到平面PAD的距离
(3)在线段PD上是否存在一点M,使得AM∥平面PBC.
查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4,
,AB=2CD=8.
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)当M点位于线段PC什么位置时,PA∥平面MBD?
(Ⅲ)求四棱锥P-ABCD的体积.
查看答案