满分5 > 高中数学试题 >

已知fn(x)=(1+x)n. (1)若f11(x)=a+a1x+a2x2+…+...

已知fn(x)=(1+x)n
(1)若f11(x)=a+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数;
(3)证明:manfen5.com 满分网
(1)考察(1+x)11(1-x)11展开式的项的项的关系,两式相减后再令x=1,可求. (2)由于g(x)是由三个二项式的和组成;利用二项展开式的通项公式求出三个二项式中x6的系数,求它们的和. (3)构造函数h(x);待证等式的左边即为h(x)展开式含xm的系数和;通过数列的求和方法:错位相减法求出h(x);求出h(x)的展开式含xm项的系数;利用组合数公式化简,恒等式得证. 【解析】 (1)f11(x)=(1+x)11=a+a1x+a2x2+…+a11x11,① 考察(1-x)11展开式的项,与①式奇数项相同,偶数项互为相反数. ∴(1+x)11-(1-x)11=2(a1x+a3x3+…+2a11x11), 令x=1得 a1+a3+…+a11==1024.  (2)fn(x)=(1+x)n.展开式中含x6项为T7=Cn6x6,系数为Cn6. g(x)中含x6项的系数等于C66+2C76+3C86=99. 证明:(3)设h(x)=(1+x)m+2(1+x)m+1+…+n(1+x)m+n-1(1) 则函数h(x)中含xm项的系数为Cmm+2×Cm+1m+…+nCm+n-1m (1+x)h(x)=(1+x)m+1+2(1+x)m+2+…+n(1+x)m+n (2) (1)-(2)得-xh(x)=(1+x)m+(1+x)m+1+(1+x)m+2+…+(1+x)m+n-1-n(1+x)m+n x2h(x)=(1+x)m-(1+x)m+n+nx(1+x)m+n h(x)中含xm项的系数,即是等式左边含xm+2项的系数, 等式右边含xm+2项的系数为-Cm+nm+2+nCm+nm+1 = 所以Cmm+2×Cm+1m+…+nCm+n-1m=
复制答案
考点分析:
相关试题推荐
已知四棱锥P-ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,
∠CDA=∠BAD=90°,manfen5.com 满分网,M,N分别是PD,PB的中点.
(1)求证:MQ∥平面PCB;
(2)求截面MCN与底面ABCD所成二面角的大小;
(3)求点A到平面MCN的距离.

manfen5.com 满分网 查看答案
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

manfen5.com 满分网 查看答案
2010年上海世博会大力倡导绿色出行,并提出在世博园区参观时可以通过植树的方式来抵消因出行产生的碳排放量.某游客非常支持这一方案,计划在游园期间种植n棵树,已知每棵树是否成活互不影响,成活率为p(0<p<1),设ξ表示他所种植的树中成活的棵数,ξ的数学期望为Eξ,方差为Dξ.
(1)若n=1,求Dξ的最大值;
(2)已知Eξ=3,标准差▱ξ=manfen5.com 满分网,求n,p的值并写出ξ的分布列.
查看答案
某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a元(a为常数,2≤a≤5 )的税收.设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例.已知每件产品的日售价为40.
元时,日销售量为10件.
(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值.
查看答案
如图,在矩形地块ABCD中有两条道路AF,EC,其中AF是以A为顶点的抛物线段,EC是线段.AB=2km,BC=6km,AE=BF=4km.在两条道路之间计划修建一个花圃,花圃形状为直角梯形QPRE(线段EQ和RP为两个底边,如图所示).求该花圃的最大面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.