满分5 > 高中数学试题 >

一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上...

一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点
(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.
manfen5.com 满分网
由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC,则 (1)连接DB,我们易得FD⊥AD,FD⊥CD,由线面垂直的判定定理,可得FD⊥面ABCD,进而得到AC⊥面FDN,由线面垂直的定义,即可得到GN⊥AC; (2)由图分析得,点P与点A重合时,GP∥面FMC,取DC中点S,连接AS、GS、GA由三角形中位线宣,我们易证明出面GSA∥面FMC,根据面面平行的性质,我们易得GA∥面FMC,即P与A重合. 证明:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC (1)连接DB,可知B、N、D共线,且AC⊥DN 又FD⊥AD,FD⊥CD, ∴FD⊥面ABCD ∴FD⊥AC ∴AC⊥面FDN,GN⊂面FDN ∴GN⊥AC (2)点P与点A重合时,GP∥面FMC 证明:取DC中点S,连接AS、GS、GA ∵G是DF的中点, ∴GS∥FC,AS∥CM ∴面GSA∥面FMC GA⊂面GSA ∴GA∥面FMC 即GP∥面FMC
复制答案
考点分析:
相关试题推荐
已知:矩形AEFD的两条对角线相交于点M(2,0),AE边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求矩形AEFD外接圆P的方程.
(2)△ABC是⊙P的内接三角形,其重心G的坐标是(1,1),求直线BC的方程.
查看答案
已知函数f(x)=4sin2x+2sin2x-2,x∈R.
(1)求f(x)的最小正周期、f(x)的最大值及此时x的集合;
(2)证明:函数f(x)的图象关于直线manfen5.com 满分网对称.
查看答案
高一年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
 合计
(1)根据上面图表,①②③④处的数值分别为多少?
(2)根据题中信息估计总体平均数是多少?
(3)估计总体落在[129,150]中的概率.
查看答案
若数列{an}满足an+12-an2=d(其中d是常数,n∈N﹡),则称数列{an}是“等方差数列”.已知数列{bn}是公差为m的差数列,则m=0是“数列{bn}是等方差数列”的    条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要条件中的一个) 查看答案
设点(a,b)在平面区域D={(a,b)||a|≤1,|b|≤1}中按均匀分布出现,则椭圆manfen5.com 满分网(a>b>0)的离心率e<manfen5.com 满分网的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.