由已知中函数f(x)满足对∀x,t∈R,且t≠0,都有t(f(x+t)-f(x))>0,结合函数单调性的定义,我们可得到函数f(x)为定义在R上的增函数,进而根据增函数的图象和性质可得其图象与直线y=a至多有一个交点,分析{(x,y)|y=f(x)}∩{(x,y)|y=a}所表示的几何意义,即可得到答案.
【解析】
∵函数f(x)满足对∀x,t∈R,且t≠0,都有t(f(x+t)-f(x))>0,
即t>0时,f(x+t)-f(x)>0,
t<0时,f(x+t)-f(x)<0,
即函数值随着自变量的增大而增大,减小而减小
则函数f(x)为定义在R上的增函数
则函数f(x)的图象与直线y=a至多有一个交点
故{(x,y)|y=f(x)}∩{(x,y)|y=a}的元素个数为0或1
故答案为:0或1