满分5 > 高中数学试题 >

已知函数f(x)=xe-x(x∈R) (Ⅰ)求函数f(x)的单调区间和极值; (...

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.
(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值. (2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得. (3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2-x2),再利用单调性根据函数值的大小得到自变量的大小关系. 【解析】 (Ⅰ)【解析】 f′(x)=(1-x)e-x 令f′(x)=0,解得x=1 当x变化时,f′(x),f(x)的变化情况如下表 所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数. 函数f(x)在x=1处取得极大值f(1)且f(1)=. (Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2 令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2 于是F'(x)=(x-1)(e2x-2-1)e-x 当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以f′(x)>0,从而函数F(x)在[1,+∞)是增函数. 又F(1)=e-1-e-1=0,所以x>1时,有f(x)>F(1)=0,即f(x)>g(x). (Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾. (2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾. 根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1. 由(Ⅱ)可知,f(x2)>g(x2), 则g(x2)=f(2-x2), 所以f(x2)>f(2-x2), 从而f(x1)>f(2-x2). 因为x2>1,所以2-x2<1, 又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数, 所以x1>2-x2,即x1+x2>2.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足a1=2,an+1=2an-n+1(n∈N+).
(1)证明数列{an-n}是等比数列,并求出数列{an}的通项公式;
(2)数列{bn}满足:manfen5.com 满分网(n∈N+),求数列{bn}的前n项和Sn
(3)比较Snmanfen5.com 满分网的大小.
查看答案
函数f(x)=manfen5.com 满分网是定义在(-1,1)的奇函数,且f(manfen5.com 满分网)=manfen5.com 满分网
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.
查看答案
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
已知数列{an}的前n项和为Sn,an=2n;{bn}为首项是2的等差数列,且b3•S5=372.
(1)求{bn}的通项公式;
(2)设{bn}的前n项和为Tn,求manfen5.com 满分网的值.
查看答案
已知函数manfen5.com 满分网的定义域为集合A,关于x的不等式2a<2-a-x的解集为B,若A∪B=B,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.