满分5 > 高中数学试题 >

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1...

manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
(I)设BD与AC交于O,则BD⊥AC,连接A1O,以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,求出与的坐标,计算它们的数量积从而得到BD⊥AA1 (II)平面AA1C1C的一个法向量为n1=(1,0,0),求出平面AA1D的一个法向量n2,计算两法向量的余弦值从而得到二面角D-A1A-C的平面角的余弦值; (III)假设在直线CC1上存在点P,使BP∥平面DA1C1,设,求出平面DA1C1的法向量n3,根据法向量n3与垂直求出λ的值,从而得到点P在C1C的延长线上,且C1C=CP. 【解析】 设BD与AC交于O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°, 所以A1O2=AA12+AO2-2AA1•AOcos60°=3, 所以AO2+A1O2=AA12,所以A1O⊥AO. 由于平面AA1C1C⊥平面ABCD,所以A1O⊥平面ABCD. 以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),,C(0,1,0),,, (I)由于,,∴BD⊥AA1 (II)由于OB⊥平面AA1C1C, ∴平面AA1C1C的一个法向量为n1=(1,0,0) 设n2⊥平面AA1D,则, 设n2=(x,y,z),则 取,∴ 所以,二面角D-A1A-C的平面角的余弦值为 (III)假设在直线CC1上存在点P,使BP∥平面DA1C1,设,则,从而有 设n3⊥平面DA1C1,则,又 设n3=(x3,y3,z3),则,取n3=(1,0,-1) 因为BP∥平面DA1C1,则λ=0,得λ=-1 即点P在C1C的延长线上,且C1C=CP
复制答案
考点分析:
相关试题推荐
甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如下:
manfen5.com 满分网
(Ⅰ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(Ⅱ)若将频率视为概率,对乙同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X,求X的分布列及数学期望EX.
查看答案
如图,在某港口A处获悉,其正东方向20海里B处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°据港口10海里的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.
(Ⅰ) 求接到救援命令时救援船据渔船的距离;
(Ⅱ)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知cos49°=manfen5.com 满分网).

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网
(I)若manfen5.com 满分网,求COS(manfen5.com 满分网-x)的值;
(II)记manfen5.com 满分网,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
已知某个几何体的三视图如图所示(正视图弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是    cm3
manfen5.com 满分网 查看答案
已知正三棱锥S-ABC内接于半径为6的球,过侧棱SA及球心O的平面截三棱锥及球面所得截面如右图,则此三棱锥的侧面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.