满分5 > 高中数学试题 >

已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (...

已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设manfen5.com 满分网,求证{Cn}是等差数列
(3)求数列{an}的通项公式及前n项和公式
(1)利用递推公式可把已知转化为an+1=4an-2an-1,从而有,从而可得数列{bn}为等比数列 (2)由(1)可得bn=an+1-2an=3•2n-1,要证数列{cn}为等差数列⇔为常数,把已知代入即可 (3)由(2)可求an=(3n-4)•2n-2,代入sn+1=4an+2可求sn+1,进而求出sn 【解析】 (1)Sn+1=Sn+an+1=4an-1+2+an+1 ∴4an+2=4an-1+2+an+1 ∴an+1-2an=2(an-2an-1) 即:且b1=a2-2a1=3 ∴{bn}是等比数列 (2){bn}的通项bn=b1•qn-1=3•2n-1 ∴ 又 ∴{Cn}为等差数列 (3)∵Cn=C1+(n-1)•d ∴ ∴an=(3n-1)•2n-2(n∈N*) Sn+1=4•an+2=4•(3n-1)•2n-2+2=(3n-1)•2n+2 ∴Sn=(3n-4)2n-1+2(n∈N*)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中t为常数,且t>0.
(Ⅰ)求函数ft(x)在(0,+∞)上的最大值;
(Ⅱ)数列{an}中,a1=3,a2=5,其前n项和Sn满足Sn+Sn-2=2Sn-1+2n-1(n≥3),且设manfen5.com 满分网,证明:对任意的x>0,manfen5.com 满分网,n=1,2,….
查看答案
manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
查看答案
甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如下:
manfen5.com 满分网
(Ⅰ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(Ⅱ)若将频率视为概率,对乙同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X,求X的分布列及数学期望EX.
查看答案
如图,在某港口A处获悉,其正东方向20海里B处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°据港口10海里的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.
(Ⅰ) 求接到救援命令时救援船据渔船的距离;
(Ⅱ)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知cos49°=manfen5.com 满分网).

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网
(I)若manfen5.com 满分网,求COS(manfen5.com 满分网-x)的值;
(II)记manfen5.com 满分网,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.