过抛物线x
2=2y上两点A(-1,
)、B(2,2)分别作抛物线的切线,两条切线交于点M.
(1)求证:∠BAM=∠BMA;
(2)记过点A、B且中心在坐标原点、对称轴为坐标轴的双曲线为C,F
1、F
2为C的两个焦点,B
1、B
2为C的虚轴的两个端点,过点B
2作直线PQ分别交C的两支于P、Q,当
∈(0,4]时,求直线PQ的斜率k的取值范围.
考点分析:
相关试题推荐
已知数列{a
n}和等比数列{b
n}满足:a
1=b
1=4,a
2=b
2=2,a
3=1,且数列{a
n+1-a
n}是等差数列,n∈N
*,
(Ⅰ)求数列{a
n}和{b
n}的通项公式;
(Ⅱ)问是否存在k∈N
*,使得
?若存在,求出k的值;若不存在,请说明理由.
查看答案
(新华网)反兴奋剂的大敌、服药者的宠儿--HGH(人体生长激素),有望在8月的北京奥运会上首次“伏法”.据悉,国际体育界研究近10年仍不见显著成效的HGH检测,日前已取得新的进展,新生产的检测设备有希望在北京奥运会上使用.若组委会计划对参加某项田径比赛的120名运动员的血样进行突击检查,采用如下化验
方法:将所有待检运动员分成若干小组,每组m个人,再把每个人的血样分成两份,化验时将每个小组内的m个人的血样各一份混合在一起进行化验,若结果中不含HGH成分,那么该组的m个人只需化验这一次就算检验合格;如果结果中含有HGH成分,那么需要对该组进行再次检验,即需要把这m个人的另一份血样逐个进行化验,才能最终确定是否检验合格,这时,对这m个人一共需要进行m+1次化验.假定对所有人来说,化验结果中含有HGH成分的概率均为
.当m=3时,
(1)求一个小组只需经过一次检验就合格的概率;
(2)设一个小组的检验次数为随机变量ξ,求ξ的分布列及数学期望.
查看答案
如图,斜三棱柱ABC-A
1B
1C
1中,侧面ACC
1A
1⊥侧面ABB
1A
1,AC=AB=
,∠CAA
1=∠BAA
1=135°.
(1)求∠BAC的大小;
(2)若底面△ABC的重心为G,侧棱AA
1=4,求GC
1与平面A
1B
1C
1所成角的大小.
查看答案
已知函数f(x)=
sinωxcosωx-cos
2ωx+
(ω>0,x∈R)的最小正周期为
.
(1)求f(
)的值,并写出函数f(x)的图象的对称中心的坐标;
(2)当x∈[
,
]时,求函数f(x)的单调递减区间.
查看答案
设定义域为[x
1,x
2]的函数y=f(x)的图象为C,图象的两个端点分别为A、B,点O为坐标原点,点M是C上任意一点,向量
=(x
1,y
1),
=(x
2,y
2),
=(x,y),满足x=λx
1+(1-λ)x
2(0<λ<1),又有向量
=λ
+(1-λ)
,现定义“函数y=f(x)在[x
1,x
2]上可在标准k下线性近似”是指|
|≤k恒成立,其中k>0,k为常数.根据上面的表述,给出下列结论:
①A、B、N三点共线;
②直线MN的方向向量可以为
=(0,1);
③“函数y=5x
2在[0,1]上可在标准1下线性近似”;
④“函数y=5x
2在[0,1]上可在标准
下线性近似”.
其中所有正确结论的番号为
.
查看答案