满分5 > 高中数学试题 >

一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球...

一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(Ⅰ)试用n表示一次摸奖中奖的概率p;
(Ⅱ)若n=5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(Ⅲ) 记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?
(Ⅰ)本题是一个等可能事件的概率,试验发生包含的事件是一次摸奖从n+5个球中任选两个,满足条件的事件是两球不同色有Cn1C51种,根据等可能事件的概率得到结果. (Ⅱ)本题是一个等可能事件的概率,若n=5,一次摸奖中奖的概率,三次摸奖是独立重复试验,然后利用n次独立重复试验中恰好发生k次的概率公式进行求解即可; (III)设每次摸奖中奖的概率为p,则三次摸奖(每次摸奖后放回),恰有一次中奖的概率为P为P=P3(1)=C31•p•(1-p)2=3p3-6p2+3p,当p= 时,P取得最大值.得到n的值. 【解析】 (Ⅰ)一次摸奖从n+5个球中任选两个,有Cn+52种,它们等可能,其中两球不同色有Cn1C51种,一次摸奖中奖的概率. (Ⅱ)若n=5,一次摸奖中奖的概率,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是. (Ⅲ)设每次摸奖中奖的概率为p,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P=P3(1)=C31•p•(1-p)2=3p3-6p2+3p,0<p<1,P'=9p2-12p+3=3(p-1)(3p-1),知在上P为增函数,在上P为减函数,当时P取得最大值.又,解得n=20. 答:当n=20时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大.
复制答案
考点分析:
相关试题推荐
5位员工甲、乙、丙、丁、戊参加单位的技能测试,已知他们测试合格的概率分别是manfen5.com 满分网
(Ⅰ)求他们中恰好有一人通过测试的概率;
(Ⅱ)求他们中恰好有两人通过测试且甲、乙两人不都通过测试的概率.
查看答案
甲、乙两小组各有10位同学,他们的身高统计如下(单位:米):
甲组:1.74,1.75,1.63,1.69,1.77,1.75,1.57,1.59,1.66,1.72,
乙组:1.63,1.69,1.73,1.78,1.59,1.70,1.63,1.76,1.67,1.63.
(Ⅰ)在甲组中任选三人,求至少有两人的身高在1.70米以上(含1.70米)的概率;
(Ⅱ)从甲、乙两小组中各任选一人,若将这20人按身高分成三个身高组:A组1.50~1.59米,B组1.60~1.69米,C组1.70~1.79米,求这两人分在不同身高组的概率.
查看答案
已知△ABC中,满足manfen5.com 满分网,a,b,c分别是△ABC的三边.
(1)试判定△ABC的形状,并求sinA+sinB的取值范围.
(2)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc对任意的a,b,c都成立,求实数k的取值范围.
查看答案
已知sin(manfen5.com 满分网+3α) sin(manfen5.com 满分网-3α)=manfen5.com 满分网,α∈(0,manfen5.com 满分网),求(manfen5.com 满分网-manfen5.com 满分网)sin4α的值.
查看答案
设函数f(x)=manfen5.com 满分网,其中向量manfen5.com 满分网=(cosmanfen5.com 满分网,sinmanfen5.com 满分网) (x∈R),向量manfen5.com 满分网=(cosϕ,sinϕ)(|ϕ|<manfen5.com 满分网),f(x)的图象关于直线x=manfen5.com 满分网对称.
(Ⅰ)求ϕ的值;
(Ⅱ)若函数y=1+sinmanfen5.com 满分网的图象按向量manfen5.com 满分网=(m,n) (|m|<π)平移可得到函数y=f(x)的图象,求向量manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.