直四棱柱ABCD-A
1B
1C
1D
1中,AD=DC=
AB,AD⊥AB,AB∥CD,E,F,G分别为AD
1,A
1B
1,AB中点.
(Ⅰ)求证:EF∥平面B
1C
1G;
(Ⅱ)当二面角G-C
1B
1-C为45?时,求CD与平面C
1B
1G所成的角.
考点分析:
相关试题推荐
已知在多面体ABCDE中,AB⊥平面ACD,DE∥AB,AC=AD=CD=DE=2,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求平面ABC和平面CDE所成的小于90?的二面角的大小;
(Ⅲ)求点A到平面BCD的距离的取值范围.
查看答案
一个口袋中装有n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.
(Ⅰ)试用n表示一次摸奖中奖的概率p;
(Ⅱ)若n=5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;
(Ⅲ) 记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?
查看答案
5位员工甲、乙、丙、丁、戊参加单位的技能测试,已知他们测试合格的概率分别是
.
(Ⅰ)求他们中恰好有一人通过测试的概率;
(Ⅱ)求他们中恰好有两人通过测试且甲、乙两人不都通过测试的概率.
查看答案
甲、乙两小组各有10位同学,他们的身高统计如下(单位:米):
甲组:1.74,1.75,1.63,1.69,1.77,1.75,1.57,1.59,1.66,1.72,
乙组:1.63,1.69,1.73,1.78,1.59,1.70,1.63,1.76,1.67,1.63.
(Ⅰ)在甲组中任选三人,求至少有两人的身高在1.70米以上(含1.70米)的概率;
(Ⅱ)从甲、乙两小组中各任选一人,若将这20人按身高分成三个身高组:A组1.50~1.59米,B组1.60~1.69米,C组1.70~1.79米,求这两人分在不同身高组的概率.
查看答案
已知△ABC中,满足
,a,b,c分别是△ABC的三边.
(1)试判定△ABC的形状,并求sinA+sinB的取值范围.
(2)若不等式a
2(b+c)+b
2(c+a)+c
2(a+b)≥kabc对任意的a,b,c都成立,求实数k的取值范围.
查看答案